Math-3A
 Lesson 11-8

Solve Systems of Linear Equations Using

Elimination

Algebraic Methods of Solving Systems of Equations

Substitution: Solve one equation for one of the variables. Substitute the equivalent expression for the variable into the other equation. This results in one equation with one variable.

Elimination: Add the equations (or multiples of the equations) to eliminate one of the variables. Then solve the single variable equation and "back substitute" the result.

Elimination Method: Eliminate one of the variables by adding the equations together.

$$
\left(\begin{array}{r}
x-3 y=5 \\
-x)+5 y=3
\end{array}\right.
$$

What property allows me to add equations together? "Property of Equality"

Adding these equations will eliminate the ' x ' variable.

$$
\begin{array}{r}
2 x-3 y=5 \\
-4 x+3 y=3
\end{array}
$$

Adding these equations will eliminate the ' y ' variable.

What variable will be eliminated if I add the following equations?

$$
\begin{aligned}
& \text { 1. } \quad \begin{aligned}
2 x+y & =-2 \\
-2 x & +3 y
\end{aligned}=-8 \\
& \text { 2. } \quad \begin{aligned}
4 x-3 y & =-2 \\
-2 x+3 y & =-8
\end{aligned}
\end{aligned}
$$

$$
3 x+y=-1
$$

$$
\text { 3. } 2 x+3 y=18
$$

Eliminate one of the variables by adding the equations together.

$$
2 y=8
$$

Replace ' y ' with 4 in

$$
y=4
$$ either of the original

$$
x-3(4)=5
$$ equations, then solve for ' x '.

$$
x=17
$$

Solution: (17, 4)

Check the solution: (using substitution)

If your work indicated the solution to be (17, 4), replace ' x ' with 17 and ' y ' with 4 in both of the original equations, to see if the ordered pair $(17,4)$ is a solution to the system of equations.

$(17)-3(4)=5$
$-(17)+5(4)=3$

Checks!
Checks!

Solution: (17, 4)

$$
\begin{gathered}
5 y=10 \\
y=2
\end{gathered}
$$

Replace ' x ' with 8 in either of the original equations, then solve for ' y '.

Solution: $(8,2)$

Solve the equation using "elimination"

$$
\begin{array}{cc}
4 x-3 y=-2 & -2(-5)+3 y=-8 \\
-2 x+3 y=-8 & 10+3 y=-8 \\
2 x=-10 & 3 y=-18 \\
x=-5 & y=-6
\end{array}
$$

Least common multiple (of 2 numbers) is the smallest number that is divisible by those two numbers.

2 and $4 \quad \mathrm{LCM}=4$

4 and 6
LCM = 12

4, 9
LCM = 36
3, 5
LCM = 15

4, 5
LCM = 20

What if the coefficients are not the same?

$$
\begin{array}{r}
5 x-y=-2 \\
-2 x+3 y=-8
\end{array}
$$

What is the LCM for the coefficients of ' y '?
$L C M=3 \quad$ You only have to fix one!

$$
\begin{array}{cr}
3^{*}(5 x-y)=-2 * 3 & 15 x-3 y=-6 \\
-2 x+3 y=-8 & -2 x+3 y=-8
\end{array}
$$

What if the coefficients are not the same?

$5 x-5 y=-2$
 $-2 x+3 y=-8$

What is the LCM for the coefficients of ' x '?

$$
\text { LCM }=10 \quad \text { You have to fix both! }
$$

$$
\begin{aligned}
& 2^{*}(5 x-5 y)=-2 * 2 \\
& 5^{*}(-2 x+3 y)=-8^{*} 5
\end{aligned}
$$

$$
\begin{aligned}
10 x-10 y & =-4 \\
-10 x+15 y & =-40
\end{aligned}
$$

$3 x-4 y=-10$
$6 x+3 y=-42$

$$
(-2) 3 x-(-2) 4 y=-10(-2)
$$

$6 x+3 y=-42$
$-6 x+8 y=20 \quad 6 x+3(-2)=-42$ $6 x+3 y=-42$

$$
6 x-6=-42
$$

$$
\begin{array}{rlrl}
11 y & =-22 & 6 x & =-36 \\
y & =-2 & x & =-6
\end{array}
$$

$$
\begin{array}{cl}
\begin{array}{c}
3 x+2 y=6 \\
x-4 y=-12
\end{array} & \begin{array}{c}
3(0)+2 y=6 \\
(0)-4 y=-12
\end{array} \\
\begin{array}{r}
(2) 3 x+(2) 2 y=6(2) \\
x-4 y=-12
\end{array} & \begin{array}{l}
2 y=6 \\
\\
6 x+4 y=12
\end{array} \\
\begin{array}{c}
\text { x } \\
x-4 y=-12
\end{array} & y=3
\end{array}
$$

Solution is $(0,3)$

$$
\begin{gathered}
5 x=0 \\
x=0
\end{gathered}
$$

Linear Equation in 3 Variables:

$$
A x+B y+C z=D \quad 3 x+2 y-z=5
$$

System of Linear Equations: 3 equations, each with the same 3 variables
(3 equations in 3 unknowns)

$$
\begin{array}{r}
A x+B y+C z=D \\
E x+F y+G z=H \\
J x+K y+L z=M
\end{array}
$$

Solving by Elimination
Pick two equations and remove one of the variables

$$
\begin{aligned}
& \text { Eq\#1: } x+2 y-2 z=-15 \quad E q \# 1 / \# 2-3 y-z=9 \\
& \text { Eq\#2: } 2 x+y-5 z=-21 \\
& \text { Eq\#3: } x-4 y+z=18 \quad \text { Eq\#il\#3 }-2 y+z=11 \\
& \text { Eq\#1:-2(} x+2 y-2 z)=(-15)(-2) \\
& \text { Eq\#2 } \quad 2 x+y-5 z=-21 \\
& -2 x-4 y+4 z=30 \\
& \text { Eq\#1/\#2 }-3 y-z=9 \\
& \text { Eq\#1: }-1(x+2 y-2 z)=(-15)(-1) \\
& \text { Eq\#3: } \quad x-4 y+z=18 \\
& -x-2 y+2 z=15 \\
& x-4(-4)+(3)=18 \\
& x+16+3=18 \\
& x=-1
\end{aligned}
$$

You start your own company to make smartphones. You
decide on 3 models; basic, $\underline{3 G \text { model, }}$ and the $\underline{4 \mathrm{G} \text { model }}$.
The basic model is for people who do not have a lot of disposable income. The 3G model has the speed and download capability that most people want. The 4 G model has all of the "bells and whistles" and is expandable to meet future needs.

You hire and train your employees to perform all of the basic tasks; assembly, testing, and packaging of each phone.

You analyze your process and employees and decide you have 260 man-hours for assembly in a week, 170 man-hours for testing, and 120 man-hours for packaging.

The table below shows the man-hour totals required for each of the three tasks.

	Basic Model	3G Model	4G Model
Assembly	1 man-hour	3 man-hours	4 man-hours
Testing	1 man-hour	2 man-hours	2 man-hours
Packaging	1 man-hour	1 man-hour	2 man-hours

What are your three constraints?
260 man-hours for assembly

$$
x+3 y+4 z=260
$$

$$
170 \text { man-hours for testing, and } x+2 y+2 z=170
$$

$$
120 \text { man-hours for packaging. } \quad x+y+2 z=120
$$

Write an equation for each of the constraints. Your goal is to figure out how many phones of each type you should build.

Let ' x ' be the number of basic phones, ' y ' be the number of $3 G$, and ' z ' be the number of $4 G$ phones you will build.

