Math-3A Lesson 11-2

Statistics: Measures of "Spread"

Measure of spread

<u>Range</u>: the difference between the greatest and least data point.

	105						
Л	100						107
Range = (105 - 35)	100	Range =	91	Dates		Range	107
(105 - 35)	100	Range = (91-45) = 46	86	Range	88		107
(105 55)	95	(91 - 45)	86	= 77	79	= 93	107
= 70	90	10	86	— / /	68	20	93
	85 80	=46	82		60 55		93 93
	80		82		55 48		93 93
	75		82		40		93
	75		77		33		93
	75		77		33		93
	75		73 68		25		93
	75		68		25		86
	70		64		25		86
	65		64		21		79
	55		50		13		64
	50		45		13		57
	50				13		57
	50				13		43
	45 35				11		36 14

<u>Q1</u>: The median of the bottom $\frac{1}{2}$ of the data

<u>Q3</u>: The median of the top $\frac{1}{2}$ of the data <u>Inter-quartile Range</u>: Q3 – Q1

Box and Whisker Plot: a graphical representation of Min data point, Q1, median, Q3, max data point.

Box and Whisker Plot: Help us to compare data visually.

Data Distribution

<u>Build</u> a frequency distribution graph for the following test data.

<u>Bell curve</u>: general shape of a frequency distribution curve that is "<u>normally distributed</u>" (when you have a lot of data).

Standard deviation a number that describes the spread of the data.

<u>Standard deviation</u> 68% of the data will be within one standard deviation of the mean.

probability of a data point being within two standard deviations of the mean.

= 13.5 + 13.5 + 34 + 34 = 95%

probability of a data point being within three standard deviations of the mean.

= 68 + 27 + 4.7 = <mark>99.7 %</mark>

Standard Deviation

<u>Standard deviation</u>: a measurement of spread of the data from the mean. The calculator does this for you.

$$S = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$$

This gives the sdev of the data "<u>sample</u>".

Normal

Not Normal

Normal Not Normal

Normal Not Normal

Some distribution

Same Std. Dev., different means

Mean = 2, Standard Deviation = 0.25

Mean = 3, Standard Deviation = 0.25

Same spread, different center point.

<u>Outlier</u>: a data point that is much higher or lower than the other data points.

To build the Normal Distribution Graph, we start off with the standard scale. The x-axis scale is labeled with #'s of standard deviations from the mean.

Only 0.15% of the data is greater than 3 sdev above the mean.

68% of the data falls between <u>-1 sdev</u> and <u>+1 sdev</u> of the mean.

To convert the standard scale of the Normal Distribution Graph to the data scale, we need (1) mean and (2) std. deviation. For example: $\overline{x} = 150$ S = 10

68% of the data falls between -1 sdev and +1 sdev of the mean.

68% of the data falls between data values 140 and 160..

The standard deviation for some data is 7. The mean for this data is 42. Draw a bell curve and label the x-axis up to 3 standard deviations above and below the mean.

What is the probability that a data point will be in the range between 28 and 42?

What is the probability that a data point will be in the range between 21 and 28?

Comparing "apples to apples"

In math, Jordan scored a 53. The class average was 57. The standard deviation was 2. How many standard deviations below the mean did Jordan score?

In science, Jordan scored a 114. The class average was 126. The standard deviation was 6. How many standard deviations below the mean did Jordan score?

On which test did Jordan perform better on?