Math-3A Lesson 11-2

Statistics:

Measures of "Spread"

Measure of spread

Range: the difference between the greatest and least data point.

Q1: The median of the bottom $1 / 2$ of the data
Q3: The median of the top $1 / 2$ of the data
Inter-quartile Range: Q3-Q1

Box and Whisker Plot: a graphical representation of Min data point, Q1, median, Q3, max data point.

Box and Whisker Plot: Help us to compare data visually.

Frequency Distribution graph:

70

1

$\begin{array}{lllllllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 105\end{array}$

\# of occurrences	1	1	3	1	1	1	5	2	1	1	1	3	1
Grade	35	45	50	55	65	70	75	80	85	90	95	100	105

Data Distribution

95
95
95
93
93
93
85
85
85
78
78
78
78
78
78
60
59
59
59
55
55
55

Bell curve: general shape of a frequency distribution curve that is "normally distributed" (when you have a lot of data).

Normal

Normal Distribution Canter

Not Normal

Standard deviation a number that describes the spread of the data.
Standard deviation 68% of the data will be within one standard deviation of the mean.
probability of a data point being within two standard deviations of the mean.
$=13.5+13.5+34+34=95 \%$
probability of a data point being within three standard deviations of the mean.

$$
=68+27+4.7=99.7 \%
$$

Standard Deviation

Standard deviation: a measurement of spread of the data from the mean. The calculator does this for you.

$$
S=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}}{n}}
$$

This gives the sdev of the data "sample".

Normal

Not Normal

Normal
 Not Normal

Normal

Not Normal

Some distribution

Same Std. Dev., different means

Mean $=1$, Standard Deviation $=0.25$

Mean $=3$, Standard Deviation $=0.25$

Mean $=2$, Standard Deviation $=0.25$

Same spread, different center point.

Outlier: a data point that is much higher or lower than the other data points.

To build the Normal Distribution Graph, we start off with the standard scale. The x-axis scale is labeled with \#'s of standard deviations from the mean.

Notice: the scale only goes from -3 to +3 SDEV from the mean.

The portion of the data that falls within each region is labeled.

Only 0.15% of the data is greater than 3 sdev above the mean.
68% of the data falls between -1 sdev and +1 sdev of the mean.

To convert the standard scale of the Normal Distribution Graph to the data scale, we need (1) mean and (2) std. deviation. For example: $\quad \bar{x}=150 \quad S=10$

68% of the data falls between -1 68% of the data falls between sdev and +1 sdev of the mean. data values 140 and 160..

The standard deviation for some data is 7 . The mean for this data is 42. Draw a bell curve and label the x-axis up to 3 standard deviations above and below the mean.

What is the probability that a data point will be in the range between 28 and 42 ?

What is the probability that a data point will be in the range between 21 and 28 ?

Comparing "apples to apples"

In math, Jordan scored a 53. The class average was 57. The standard deviation was 2. How many standard deviations below the mean did Jordan score?

In science, Jordan scored a 114. The class average was 126. The standard deviation was 6 . How many standard deviations below the mean did Jordan score?

On which test did Jordan perform better on?

