SM3-A Lesson 1-8 Graph the Exponential Function $f(x)=2^{x}$ 4 items needed to convert the graph into an equation.

1) Recognize that the graph is the exponential function.

$$
g(x)=a b^{x}+k
$$

2) Recognize the y-value of the horizontal asymptote.

$$
y=0
$$

3) The $x-y$ values of the y-intercept.
 $(0,1)$
4) Find one other "lattice point" (where the graph has integer values for ' x ' and ' y '.

What is the equation of the graph?

1) Start with the general transformation equation.

$$
g(x)=a b^{x}+k
$$

2) Find the value of ' k ' (this is the horizontal asymptote).

$$
g(x)=a b^{x}+k
$$

Horizontal asymptote: $y=0$

$$
k=0
$$

Rewrite the equation.

$$
g(x)=a b^{x}+k \quad \rightarrow \quad y=a b^{x}
$$

$$
g(x)=a b^{x}+k \quad \rightarrow \quad y=a b^{x}
$$

3) y-intercept

Substitute $(0,1)$ into the equation. $y=a b^{x} \rightarrow_{y} 1=a b^{0}$ Solve for 'a' $a=1$

Rewrite the equation

$$
y=a b^{x} \rightarrow y=b^{x}
$$

4) Substitute a "nice" $x-y$ pair from the graph into the equation.
Substitute $(1,2)$ into the equation.

$$
y=b^{x} \rightarrow 2=b^{1}
$$

Solve for 'b' b=2

Rewrite the equation

$$
y=2^{x}
$$

What is the equation of the graph?

1) Start with

$$
g(x)=a b^{x}+k
$$

2) horizontal asymptote $y=1$

$$
k=1 \quad y=a b^{x}+1
$$

3) y-intercept $(0,4) 4=a b^{0}+1$

$$
a=3 \quad y=3 b^{x}+1
$$

4) "Nice" x-y pair $(-1,7)$

$$
\begin{aligned}
& 7=3 b^{-1}+1 \\
& 6=3 b^{-1} \\
& 2=b^{-1} \quad 2=\frac{1}{b} \quad b=\frac{1}{2} \quad y=3\left(\frac{1}{2}\right)^{x}+1
\end{aligned}
$$

