SM3-A Lesson 1-7 PROPERTIES of Exponents

Whole Number System is made up of zero and the positive "counting" numbers. $0,1,2,3,4, \ldots$
Negative Exponent Property: a negative exponent can be changed to a positive exponent by taking the reciprocal of the base. $\left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}$

A whole number with a negative exponent becomes a fraction. A very large negative number exponent on a whole number is equivalent to a very small decimal number.
For example $\quad 2^{-5}=\frac{1}{2^{5}}=\frac{1}{32}=0.03125$
Zero Exponent Property: any base with a zero exponent simplifies to the number ' 1 '. $\quad 2^{0}=1$

$$
f(x)=\left(2^{-1}\right)^{x}
$$

Exponent of a Power Property of Exponents: A power (a base with an exponent) that also has an exponent, can be simplified by multiplying the exponents.

For example: $\quad\left(x^{3}\right)^{4}=x^{12} \quad$ Similarly: $\quad 3^{2 x}=\left(3^{2}\right)^{x}$
This property explains why replacing ' x ' with $(-\mathrm{x})$ in the exponential function causes a reflection of the original function across the y-axis

$$
\begin{aligned}
& g(x)=2^{x} \\
& f(x)=2^{-x} \\
& f(x)=\left(2^{-1}\right)^{x} \quad f(x)=\left(\frac{1}{2}\right)^{x}
\end{aligned}
$$

