Math-3A Lesson 1-7

Exponential Function

The "Parent" Exponential Function

$$
y=b^{x} \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{x}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

Fill in the output values of the table and graph the points.

$$
f(x)=2^{x}
$$

$$
\begin{aligned}
& \text { Growth Factor is the } \\
& \text { base of the exponential } \\
& \left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \quad=0.25 \quad \begin{array}{l}
2^{0}=1 \\
\text { "zero }
\end{array} \\
& \text { "negative exponent property" } \\
& \text { exponent } \\
& \text { property" }
\end{aligned}
$$

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)? As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

x	$2^{()}$	y
-1	$2^{(-1)}$	$1 / 2$
	$f(-1)=1 / 2$	
-2	$2^{(-2)}$	$1 / 4$
-3	$2^{(-3)}$	$1 / 8$
$f(-2)=1 / 4$		
-4	$2^{(-4)}$	$1 / 16$
$f(-3)=1 / 8$		
-5	$2^{(-5)}$	$1 / 32$
$f(-4)=1 / 16$		
	$f(-5)=1 / 32$	

' y ' gets closer and closer to zero but never reaches zero.

Horizontal Asymptote: a horizontal line the graph approaches but $f(x)=2^{x}$ never reaches.

$$
y=0
$$

Domain $=$?

$$
x=(-\infty, \infty)
$$

range $=$?

$$
y=(0, \infty)
$$

y-intercept $=$?
$f(0)=y$ intercept

$$
f(0)=2^{0}=1
$$

Exponential Growth: the graph is increasing (as you go from left to right the graph goes upward). Growth occurs when the base of the exponential is greater than 1.

$$
\begin{aligned}
& y=b^{x} \quad \text { 'b' }>1 \rightarrow \text { growth } \\
& f(x)=2^{x} \quad g(x)=3^{x}
\end{aligned}
$$

What do both graphs have the same y-intercept?

$$
\begin{aligned}
& f(0)=2^{0}=1 \\
& g(0)=3^{0}=1
\end{aligned}
$$

All exponential "parent" functions have $(0,1)$ as the y-intercept.

$g(x)=2^{x}$
$f(x)=\left(\frac{1}{2}\right)^{x}$
the y-axis
\rightarrow Reflection across the y-axis (2) If $(3,2)$ is reflected across the y-axis, where would it be?
\rightarrow Replacing ' x ' with '(-x)' causes a reflection across the y-axis

Negative Exponent Property

Exponential Decay: the graph is decreasing (as you go from left to right the graph goes downward). This occurs when the base of the exponential is between 0 and 1 .

$$
\begin{gathered}
y=b^{x} \\
0<' b '<1 \rightarrow \text { decay }
\end{gathered}
$$

Can the base be zero?
$g(x)=(0)^{x}$

x	y	$(0 / 1)^{-1}$$(0)^{0}=0 ?=1$
-1	$1 / 0=?$	
0	???	
1	0	(0) ${ }^{1}$

b $\neq 0$
$f(x)=a b^{x}$

Can the 'base' be negative? $\quad f(x)=a b^{x}$
$g(x)=(-2)^{x}$
' b ' > $1 \rightarrow$ growth $0<' b$ ' $<1 \rightarrow$ decay

x	y

$b \neq$ negative numbers

Can the base be $1 ?$
$f(x)=a b^{x}$
$g(x)=(1)^{x} \quad \mathrm{~b} \neq 1 \quad \mathrm{f}^{y}$

$$
\begin{aligned}
& 0<b<1, \text { OR } \mathrm{b}>1 \\
& b=(0,1) \cup(1, \infty)
\end{aligned}
$$

$f(x)=2^{x} \quad g(x)=3(2)^{x}$

\mathbf{x}	$\left.2^{(}\right)$	$\mathrm{f}(\mathrm{x})$	$g(x)$
$-\mathbf{- 2}$	2^{-2}	0.25	0.75
-1	2^{-1}	0.5	1.5
0	2^{0}	1	3
1	2^{1}	2	6
$\mathbf{2}$	2^{2}	4	12

Vertically stretched by a factor of 3

Horizontal $\quad y=0$
asymptote: $y=0$

$$
\text { Domain }=? \quad \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { range }=? & y=(0, \infty) \\
& y=(0, \infty)
\end{array}
$$

x	$2^{()}$	$f(x)$	$k(x)$
-2	2^{-2}	0.25	4.25
-1	2^{-1}	0.5	4.5
0	2^{0}	1	5
1	2^{1}	2	6
2	2^{2}	4	8

$\begin{array}{ll}\text { Horizontal } & y=0 \\ \text { asymptote: } & y=4\end{array}$
$\begin{array}{ll}\text { Horizontal } & y=0 \\ \text { asymptote: } & y=4\end{array}$

$$
\text { Domain }=? \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$f(x)=2^{x} \quad \mathrm{k}(x)=2^{x}+4$

Shifted UP by 4

$$
\begin{array}{ll}
\text { range }=? & y=-t(0, \infty) \\
& y=(4, \infty)
\end{array}
$$

y -intercept $=$?
$(0,1)$
$(0,5)$

Transformations of the Exponential Function

$f(x)=2^{x}$ Base-2 Exponential Parent Function

$$
h(x)=3)(2)^{x}+4
$$

Up 4 shift

Transformation Form of the Exponential Function

y-intercept: ($0, a+k$)
$h(0)=3(2)^{0}+4$

$$
h(0)=7
$$ of the exponential)

