

$$
f(x)=x^{3}
$$

Inflection Point: the point where the shape of the graph changes from "concave down" (curving downward) to "concave up" (curving upward) or vice versa.

Inflection point: \qquad
\qquad

Shape of the graph: Not vertically stretched: from the inflection point "right 1, up 1"

Inflection point

Inflection point
Describe the transformations of the parent function given by:

$$
f(x)=x^{3}
$$

Inflection point \qquad shape
is \qquad
,

Some number equals the cubed root of 5 .

$$
x=\sqrt[3]{5}
$$

Use the property of equality to "cube" the left and right side of the equal sign results in an equivalent equation.

$$
\begin{aligned}
(x)^{3} & =(\sqrt[3]{5})^{3} \\
x^{3} & =5
\end{aligned}
$$

$\sqrt[3]{5}$ means "what number cubed equals 5 "

Cubed Root function: $f(x)=\sqrt[3]{x}$

