Math-3A
 Lesson 1-4

The Absolute Value Function And
The Square Root Function

Describe how each function transforms the "parent" $f(x)$.
$f(x)=x^{2}$

$$
\begin{gathered}
g(x)=x^{2}+2 \\
f(x) \text { up } 2 \\
\end{gathered}
$$

$$
\begin{aligned}
& j(x)=3 x^{2} \\
& f(x) \text { VSF-3 }
\end{aligned}
$$

$h(x)=(x-1)^{2}$
$\mathrm{f}(\mathrm{x})$ right 1

$$
k(x)=-x^{2}
$$

$\mathrm{f}(\mathrm{x})$ reflected across the x -axis

Absolute Value Function

$$
f(x)=|x|
$$

Fill in the table, then graph the $x-y$ pairs.

x	y
-2	2
-1	1
0	0
1	1
2	2

$y=|-2|$
$|-2|$ means "what is the distance between -2 and zero?

Just like the Quadratic Function, the point $(0,0)$ is the vertex and there is a point in the position "right 1, up 1" (from the vertex).
$f(x)=|x|$
$g(x)=-|x|$

$x-$	y
-2	-2
-1	-1
0	0
1	-1
2	-2

Multiplying the parent function by -1 reflects it across the x-axis.
What is the vertex?

Adding 2 to the parent function causes the graph to translate up 2

Replacing ' x ' in the parent function with '($x-1$)' causes the graph to translate right ' 1 '

What is the transformation to the parent function?

$$
y=|x|
$$

$$
y=|x-3|
$$

$$
y=\overline{\bar{v}} \underset{\sim}{2}|x|
$$

$$
y=2\left|\boldsymbol{X}^{\eta}-1\right|
$$

$y=\mid x+1+4$
left 1 , down 4 reflect $x, V S F=2$, right 3 , up 4
$\mathrm{VSF}=2$, right 1

$y=x^{2} \quad y=(-1) a(x-h)^{2}+k$
Reflection
Vertical Shift stretch left/right shift up or down
$y=3(x+5)^{2}-2$
VSF=3,
left 5 , down 2

$$
f(x)=-5|x-2|+3
$$

reflected (x-axis)
VSF=5, right 2, up 3

What does adding or subtraction " k " do to the parent function?

$$
f(x)=|x|+k \downarrow \quad \text { Vertical shift }
$$

What does adding or subtraction " h " do to the parent function?

$$
f(x)=|x-\vec{h}| \quad \text { Horizontal shift }
$$

What does multiplying by 'a' do to the parent function?

$$
f(x)=|a| x \mid \quad \text { Vertical stretch }
$$

What does multiplying by (-1) do to the parent function?

$$
f(x)=-|x| \quad \text { Reflection (x-axis) }
$$

What equation has been graphed? $\mathrm{f}(x)=|x|$

1) Vertex has moved left 2 and up 4.

$$
g(x)=\ldots \quad|x+2|+4
$$

2) Shape of the graph: from the vertex move right 1, down 3.

\rightarrow Reflect x -axis, VSF $=3$.

$$
g(x)=-3|x+2|+4
$$

Square Root Function $f(x)=\sqrt{x}$

Fill in the table, then graph the $x-y$ pairs

x	y	$y=\sqrt{x}$
9	3	$y=\sqrt{9}=3$
4	2	$y=\sqrt{4}=2$
1	1	$y=\sqrt{1}=1$
0	0	$y=\sqrt{0}=0$
-1	$? ?$	$y=\sqrt{-1}=i$

This is the first function, so far, that does NOT have all real numbers as the domain.

Shape of the graph
$f(x)=\sqrt{x}$

Square Root Function $\quad f(x)=\sqrt{x}$

Does the graph ever reach horizontal? never
Domain of the graph? $\quad x=[0, \infty)$
Range of the graph? $y=[0, \infty)$
Where is the function increasing? $f(x) \uparrow$ on: $y=[0, \infty)$
Where is the function decreasing? never
Where is the function positive? $f(x)>0$ on: $y=[0, \infty)$
Where is the function negative? never

Describe the transformations to the parent function:

$$
y=4+\sqrt{x+3} \quad y=\sqrt{x+3}+4
$$

Up 4, left 3
Domain?

$$
x=[-3, \infty)
$$

Range?

$$
y=[4, \infty)
$$

End point?
$(-3,4)$

Describe the transformations to the parent function: $f(x)=\sqrt{x}$ Where is the endpoint of the graph?
$g(x)=\sqrt{x-2}+4 \quad g(x)=4+\sqrt{x-2}$
right 2, up 4
Up 4, right 2
End point: $(2,4)$
$k(x)=-3-2 \sqrt{x+1}$ Left 1, down 3, reflected (x-axis), VSF-2
End point: (-1, -3)
$h(x)=-5+2 \sqrt{x}$ Down 5, VSF-2
End point: (0, -5)
$j(x)=1-4 \sqrt{x+2} \quad$ Left 2, up 1, reflected (x-axis), VSF-4
End point: $(-2,1)$

What is the equation of the graph?

Parent has been transformed:
right 4, up 2, reflected (x-axis)

$$
\begin{aligned}
& y=\sqrt{(x-4)}+2 \\
& y=2+\sqrt{(x-4)}
\end{aligned}
$$

What is the equation of the graph?

Let's generalize the transformations

$f(x)=x^{2} \quad y=(-1) a(x-h)^{2}+k$

Reflection across x-axis

vertical Translates

 stretch left/right translating up or down factor$g(x)=|x|$
$y=(-1) a|x-h|+k$
$h(x)=\sqrt{x}$
$y=(-1) a \sqrt{x-h}+k$

