## SM3-A: Lesson 1-2 Handout

Delta a Greek letter (that looks like a triangle) used in engineering and math to denote "change."
$\Delta x$ Means
$\Delta y$ Means $\qquad$
$\qquad$


1) Fill in the output values defined by the equation
2) Find $\Delta x$ and $\Delta y$ for adjacent values in each table

Why isn't the change in 'y' between adjacent terms equal to the coefficient of ' $x$ '?

$$
\begin{aligned}
& y=2 x+1 \\
& y=3 .-5 \quad \underbrace{|c| c|r| r \mid}_{+6} \begin{array}{|c|c|c|}
\hline \mathrm{x} & 0 & 2 \\
\hline \mathrm{y} & -5 & 1 \\
\hline
\end{array}
\end{aligned}
$$

How can you use the change in ' $x$ ' and the change in ' $y$ ' in the tables to calculate the coefficient of ' $x$ '?
equal to the coeficient of 'x?
$\qquad$

1) Fill in the output values defined by the equation
2) Find $\Delta x$ and $\Delta y$ for adjacent values in each table


Notice the numbers that
have been circled.
This number in the equation is called the $\qquad$




Slope is the coefficient of ' $x$ ' when the equation is written in the form: $\mathrm{y}=$
$\qquad$
$m=$ $\qquad$
If a graph is linear, the slope (steepness) needs to be
$\qquad$ -
$\qquad$

| Your turn: Which data set is linear? |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A |  |  | B |  | C |
| $\times$ | $f(x)$ | x | $g(x)$ |  |  |
| 0 | 0 | -4 | 32 | -4 |  |
| 1 | 1 |  | 18 | -3 |  |
| 2 | 1.4 | -2 | 8 | -2 | -3 |
| 3 | 1.7 | -1 | 2 | -1 |  |
| 4 | 2.0 | 0 | 0 | 0 | 1 |
| 5 | 2.2 | 1 | 2 | 1 | 3 |
| 6 | 2.4 | 2 | 8 | 2 | 5 |
| 7 | 2.6 | 3 | 18 | 3 | 7 |
| 8 | 2.8 |  |  |  | 9 |
| 9 | 3 |  |  |  |  |

Slope-intercept form of a linear equation: the equation of a line written in the form:
$y=f(x)$
that gives the
slope of the line
and
the $y$-value where the graph crosses the $y$-axis.

$$
\begin{aligned}
& y=m x+b \\
& y=3 x+2
\end{aligned}
$$

Slope $=3 \quad y$-intercept: $(0,2)$


