SM3-A HW #9-1 (Trig Ratios)

Date Period

Find the value of the trig function indicated. Do not give these values in decimal form. I want them in fraction form with simplified radicals (if applicable).

1) $\tan \theta$

2) sin *(*

3) $\cot \theta$

4) $\csc \theta$

5) sec

6) sin

7) $\sin \theta$

8) cot

In each triangle ABC, angle C is a right angle, little side 'a' is opposite angle A, etc. Find the value of the trig function indicated (in simplified radical form if applicable).

9) Find csc *A* if b = 24, a = 24

10) Find cot *A* if a = 8, c = 17

11) Find esc *A* if b = 12, $c = 4\sqrt{10}$

12) Find $\cos A$ if $c = 2\sqrt{2}$, b = 2

13) Find sin *A* if $b = \sqrt{17}$, a = 8

14) Find $\tan A$ if b = 15, c = 23

Find the measure of each:

- a) Standard Position angle
- b) Reference Angle
- c) In which quadrant is the terminal side of the angle?

15)

16)

17)

18)

- 19) For what type of triangles are "trig ratios" valid?
- 20) In your trig tables, why is there only one entry in the sine column for a 30 degree angle, or for that matter, why does each angle only have one entry in the sine, cosine, or tangent column for that angle?
- 21) Describe what a "standard position angle" is.
- 22) If trigonometric ratios are only defined for right triangles, and right triangles do not have obtuse angles, how is it possible to find the sine of 120 degrees?