\qquad
\qquad

1) Suppose that you test apple juice and find that the hydrogen ion concentration is $\mathrm{H}+=0.0003$ moles/li. Find the pH value and determine whether the juice is basic or acidic. (If $\mathrm{pH}>7$ it is basic).
2) You test some ammonia and determine the hydrogen ion concentration to be $\mathrm{H}+=1.3 \cdot 10^{-9}$ moles $/ l i$. Find the pH value and determine whether the ammonia is basic or acidic.
3) What is the $\mathrm{H}+$ concentration if the measured $\mathrm{pH}=2.7$?
4) What is the $\mathrm{H}+$ concentration if the measured $\mathrm{pH}=12.4$?
5) Find the time required for an investment of $\$ 1000$ to double if the money is placed in a simple interest account (compounded once per year) that earns 3.5% interest.
6) The front row of a rock concert has a sound intensity of 1.5×10^{2} watts $/ \mathrm{m}^{2}$.

How loud is the sound in decibels? (they need to turn the volume down or you will go deaf!)
7) What is the sound intensity of a sparrow in flight that makes 2 dB of sound?
8) Polonium-210 decays to Lead-206. If the half life of Polonium-210 is 140 days, what is the decay constant (the " k " value for the base 'e' exponential) (show your work).
9) The half life of Rubidium- 88 is 18 minutes. What is the decay constant?
10) The half-life of Iodine-131 (a radioactive isotope that is present after a nuclear explosion or a nuclear reactor melt-down) is about 8 days.
a) what is the decay constant (the base 'e' growth rate) for I-131?
b) How long would it take for the amount of I-131 to decay to $1 / 8$ of its original amount?
11) The radioactive decay constant for Plutonium 238 (a fissionable isotope of plutonium) is -0.0079 per year.
a) what is the half life for $\mathrm{Pu}-238$?
b) How long would it take for the amount of Pu-238 to decay to $1 / 8$ of its original amount?
12) $\sqrt{12-2 x}=\sqrt{2 x}$
14) Solve:

$$
\log _{12}\left(m^{2}-20\right)=\log _{12}(-7 m-2)
$$

16) Solve (hint: condense the log)
$\log _{4}(x-6)-\log _{4} x=1$
17) Solve. Round to nearest $1 / 10,000$

$$
3 \cdot 7^{-5 n-1}=61
$$

15) Solve (hint: condense the log)

$$
\log _{3}(x+5)-\log _{3} x=1
$$

17) Solve (hint: condense the log)

$$
\log _{3} 4+\log _{3} x^{2}=4
$$

18) A pizza was cooked in an oven at 425 degrees Fahrenheit. The pizza was removed from the oven and placed on the counter in a room that was at 75 degrees. After 10 minutes the temperature of the cake was 200 degrees.
a) Find the equation that models this situation using: $T(t)=A B^{t}+k$
b) Convert this equation to a base 'e' exponential equation of the form: $T(t)=A e^{k t}+m$
c) How long will it take to cool to 105 degrees?
