SM3-A HW \#4-6 (Practice the reciprocal function)

\qquad Period \qquad

1) $f(x)=\frac{3 x-9}{x-4}$
a) equation in standard reciprocal form?
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
2) $f(x)=\frac{8 x}{4 x+3}$
a) equation in standard reciprocal form?
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
3) $f(x)=\frac{x^{2}+8 x-20}{-x+4}$
a) Rewrite the equation as a linear function (w/ remainder over divisor)
b) The quotient (not the remainder) determines end-behavor.
What is the end behavior?
c) What are the x-intercepts? (Write as $x-y$ pairs)
d) What is the vertical asymptote?
4) $f(x)=\frac{4 x^{2}-x}{x-3}$
a) Rewrite the equation as a linear function
(w/ remainder over divisor)
b) The quotient (not the remainder) determines end-behavor.
What is the end behavior?
c) What are the x-intercepts? (Write as x-y pairs)
d) What is the vertical asymptote?
5) $f(x)=\frac{8 x+3}{-4 x+12}$
a) Write the equation as quotient plus remainder over divisor.
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
6) $y=\frac{2 x-5}{x+2}$
a) equation in standard reciprocal form?
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
7) Given the equation: $y=-\frac{2}{x+1}+6$:
a) what is the horizontal asymptote?
b) what is the vertical asymptote?
c) what is the domain?
d) what is the range?
8) $y=\frac{4 x-3}{x-4}$
a) Write the equation as quotient plus remainder over divisor.
b) Vertical Asymptote?
c) Horizontal Asymptote?
d) x-intercept?
9) Given the equation: $y=\frac{3}{x+4}-5$:
a) what is the horizontal asymptote?
b) what is the vertical asymptote?
c) what is the domain?
d) what is the range?
10) The following is a transformation of the function: $y=\frac{1}{x}$. What is the equation of the graph?

11) The following is a transformation of the function: $y=\frac{1}{x}$. What is the equation of the graph?

12) The following is a transformation of the function: $y=\frac{1}{x}$. What is the equation of the graph?

Simplify each expression.

13) $\frac{3}{3 x y}+\frac{2}{5 y^{2}}$
14) $\frac{3 b}{b-3}+\frac{3}{b-4}$

Convert to a 1st degree polynomial (using division).
15) $y=\frac{3 x^{2}+16 x+27}{x+2}$
16) $y=\frac{4 x^{2}+10 x-10}{x+3}$

