\qquad
\qquad

1) The amount of money in a bank account (as a function of time) that is compounded is given by $A(t)=P\left(1+\frac{r}{k}\right)^{k t}$
where P is the "principal", ' r ' is the anual interest rate, ' k ' is the number of times interest is paid per year, and ' t ' is the number of years the money has been in the account. How long does it take for the principal to triple in an account earning 6.5% annual interest compounded monthly? (solve either algebraically or graphically).
2) The amount of money in a bank account (as a function of time) that is compounded is given by $A(t)=P\left(1+\frac{r}{k}\right)^{k t}$
where P is the "principal", ' r ' is the anual interest rate, ' k ' is the number of times interest is paid per year, and ' t ' is the number of years the money has been in the account. How long does it take for the principal to double in an account earning 4.5% annual interest compounded daily? (solve either algebraically or graphically).

Find the inverse of each function.

3) $g(x)=-x^{5}-2$
4) $g(x)=(x+2)^{3}-2$
5) $g(x)=\frac{5 x}{4 x-3}-2$

$$
g^{-1}(x)=?
$$

Solve each equation.

6) $\log _{12}(v-10)+9=12$
7) $-5+\log _{5}-9 p=-7$
8) $-6+\log _{8}(x+4)=-6$

Solve each equation. Round your answers to the nearest ten-thousandth.
9) $-17^{x-1}=-44$
10) $e^{-6 v}-1=65$
11) $20^{6 x}-5=33$

Solve each system by elimination. Show your work! (No work--no points).
12) $4 x-6 y=4$
$-4 x+6 y=2$
13) $5 x-5 y=10$
$-5 x-y=2$

Find all zeros.

14) $f(x)=3 x^{3}+5 x^{2}+2 x$
15) $f(x)=x^{4}-7 x^{2}+10$

Solve each system by substitution. Show your work!
16) $y=2 x-6$
$y=-3 x-6$
17) $y=5 x+2$
$y=-4 x+2$
18) Solve:
$2 m^{2}-5 m-7=0$
19) Solve:
$2 x^{2}+15 x+18=0$
20) Solve:
$n^{2}-18 n+32=0$
21) Solve:
$x^{2}-6 x-43=0$

Solve the system.

22) $4 x+y+2 z=7$
$2 x+6 y+4 z=4$
$-5 x-y+3 z=2$
23) $5 x+3 y-4 z=-17$
$3 x-2 y-6 z=-2$
$6 x+5 y+6 z=5$
