\qquad
\qquad

1) The amount of money in a bank account (as a function of time) that is compounded is given by $A(t)=P\left(1+\frac{r}{k}\right)^{k t}$
where P is the "principal", ' r ' is the anual interest rate, ' k ' is the number of times interest is paid per year, and ' t ' is the number of years the money has been in the account. How long does it take for the principal to triple in an account earning 2.5% annual interest compounded semi-annually? (solve either algebraically or graphically).
2) The amount of money in a bank account (as a function of time) that is compounded is given by $A(t)=P\left(1+\frac{r}{k}\right)^{k t}$
where P is the "principal", ' r ' is the anual interest rate, ' k ' is the number of times interest is paid per year, and ' t ' is the number of years the money has been in the account. How long does it take for the principal to double in an account earning 8.5% annual interest compounded monthly? (solve either algebraically or graphically).

Find the inverse of each function.

3) $g(n)=(n-2)^{3}+1$
4) $f(x)=-2 x^{3}$
5) $g(x)=\frac{2 x}{x-3}-1$

$$
g^{-1}(x)=?
$$

Solve each equation.

6) $\log _{9} 10 x-10=-6$
7) $4+\log _{4} 3 x=4$

Solve each equation. Round your answers to the nearest ten-thousandth.
8) $14^{b+2.5}+3=75.4$
9) $10 \cdot 18^{k+3}=31$

Solve each system by elimination. Show your work! (No work--no points).
10) $3 x-y=3$
$-7 x+y=1$
11) $-9 x-7 y=-10$ $9 x+9 y=0$

Find all zeros.
12) $f(x)=5 x^{3}-11 x^{2}-12 x$
13) $f(x)=x^{4}-14 x^{2}+48$

Solve each system by substitution. Show your work!
14) $y=-4 x-12$
$y=2 x+12$
15) $y=-7 x-6$
$y=6 x+20$
16) Solve:
$5 r^{2}+2 r=0$
17) Solve:
$3 v^{2}+2 v-21=0$

Solve the system.

18) $-5 x+2 y+3 z=23$
$-2 x+4 y-6 z=6$
$3 x-3 y+6 z=-12$
19) $-3 a-5 b+6 c=9$
$a+5 b-4 c=-9$
$5 a-5 b-4 c=3$
