Math-3A	Name	ID: 1
SM3-A HW #11-7 (solve sy	ystems using substitution) Date	Period
Solve each system by substitution.	Show your work!	
1) $y = 6x - 1$ $y = -8x - 1$	2) $y = 5x + 9$ y = 3x + 3	
3) $y = -4x - 2$ 2x - y = -10	4) $y = 8x - 23$ 2x + 4y = 10	
5) $y = -2x - 5$ -4x - 6y = 14	6) $-4x - 4y = 4$ $x - 4y = -21$	
7) $-8x + 4y = -20$ -x + y = -6	8) $-4x + y = -17$ -2x + 2y = -10	

9) One order at "In-n-Out Burger" had 4 hamburgers and 5 large milkshakes. The total cost (without tax) was \$21.56. Another order had 13 hamburgers and 8 milkshakes. The total cost (without tax) was \$57.57. Let x =cost of a hamburger, y = cost of a milkshake(a) Write two equations that relate the total cost of the order to the number/cost of the hamburgers and drinks. (b) Solve the sytem of equations either by graphing, substitution, or elimination. What is the cost of a hamburger? What is the cost of a milkshake?

- 10) One order at "Joe's Pizza Bar" had 12 large pizzas and 5 small pizzas. The total cost (without tax) was \$135.75. Another order had 3 large pizzas and 7 small pizzas. The total cost (without tax) was 72.75. Let x = cost of a large pizza, $y = \cos t$ of a small pizza (a) Write two equations that relate the total cost of the order to the number/cost of the large/small pizzas (b) Solve the sytem of equations either by graphing, substitution, or elimination. What is the cost of a hamburger? What is the cost of a milkshake?
- 11) Is the ordered pair (4, 6) a solution to the 12) Is the ordered pair (-4, -2) a solution system of equations? (Show your work) to the system of equations? 14x - 9y = 2-8x + 5y = 227x - 3y = 124x - y = -14