\qquad

SM3-A HW\#10-9 (Applications of sinusoids)

Date \qquad Period \qquad
Using degrees, find the centerline, amplitude, period, and phase shift (left/right) of each function. Hint: separate the HSF from the left/right shift by factoring out the coefficient of $\boldsymbol{\theta}$

1) $y=4 \sin \frac{\theta}{4}$
2) $y=6 \cos 4 \theta$

Using radians, find the centerline, amplitude, period, and phase shift (left/right shift) of each function.
3) $y=6 \cos \frac{\theta}{7}$
4) $y=3 \sin 6 \theta$

Find the area of each triangle to the nearest tenth.
5)

Find the measure of each angle indicated. Round to the nearest tenth.

Find each measurement indicated. Round your answers to the nearest tenth.
6) $m \angle B=74^{\circ}, a=33 \mathrm{yd}, b=17 \mathrm{yd}$ Find $m \angle C$

Find the measure of each side indicated. Round to the nearest tenth.
8)

Solve each equation.
9) $\log _{5}(x+3)-\log _{5} x=2$
10) $\log _{5} 10+\log _{5} 3 x=3$
11) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 2 inches, (b) completes one cycle in 10 seconds, (c) disregard left/right shift, (d) use radians
12) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 4 inches, (b) completes one cycle in 12 seconds, (c) disregard left/right shift, (d) use degrees
13) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 4.7 inches, (b) completes 50 cycles per minute (careful: this is a frequency not a period), (c) disregard left/right shift, (d) use degrees, (e) have the input value be time in seconds
14) Find the equation that predicts the height of a weight that is suspended from a spring given the following conditions: a) Initial displacement from equilibrium: 9.7 inches, (b) completes 5 cycles per second (careful: this is a frequency not a period), (c) disregard left/right shift, (d) use radians, (e) have the input value be time in seconds
15) A Ferris wheel has a diameter of 444 feet. The bottom of the Ferris Wheel is 3 feet off the ground. Once all of the cars (it's a big Ferris Wheel) are loaded it takes 80 seconds to complete one revolution. (This is a period!). Write an equation that predicts the height of the bottom of a car as a function of time. Disregard any left/right shift of the sine function. Use radians to determine ' b '. $h(t)=a \sin (b \cdot \theta)+k$
16) A Ferris wheel has a diameter of 26 meters. The bottom of the Ferris Wheel is 1 meter off the ground. Once all of the chairs are loaded it takes 12 seconds to complete one revolution. (This is a period!). Write an equation that predicts the height of the bottom of a chair as a function of time. Disregard any left/right shift of the sine function. Use degrees to determine ' b '.
$h(t)=a \sin (b \cdot \theta)+k$

