

We can rewrite the base of any exponential as a power of 'e'.

$$y = 2^{x}$$
 $y = e^{kx}$
 $y = (e^{k})^{x}$ $e^{0.693} \approx 2$
 $e^{k} = 2$ $y = e^{0.693x}$
 $k = \ln 2$
 $k \approx 0.693$

Rewrite the following as base 'e' exponential equations.				
$y = 4^x$	$=e^{1.386x}$	How can you distinguish between growth and decay for…		
$y = 1.1^{x}$	$=e^{0.095x}$	<u>A base "b" exponential?</u> $y = b^x$		
$y = 1.01^{x}$	$=e^{0.010x}$	$\begin{array}{ c c }\hline 0 < b < 1 & decay \\\hline b > 1 & growth \\\hline \end{array}$		
$y = 0.85^{x}$	$=e^{-0.163x}$	A base "e" exponential?		
$y = 0.25^{x}$	$=e^{-1.386x}$	$y = e^{kx}$ $\boxed{k < 0} \text{decay}$ $\boxed{k > 0} \text{growth}$		

Temp (0, 100) (° C) (9, 50) T = 15 Time (min.)	Boiling water (100° C) is taken off the stove to cool in a room at 15° C. After 9 minutes, the water's temperature is 50 C. Write the modeling equation
$T(t) = a(b)^t + k$	as a base 'b' exponential.
1) <u>Horizontal Asymptote</u> $T(t) = a(b)^{t} + 15$ 2) <u>y-intercept</u>	$\left(\frac{50-15}{85}\right) = (b)^9$
$100 = a(b)^0 + 15$ a = 85	$\left(\frac{50-15}{85}\right)^{\prime} = b$
3) <u>"nice point"</u>	b = 0.906
$50 = 85(b)^9 + 15$	4) <u>Final equation</u>
. /	$T(t) = 85(0.906)^t + 15$

What is the sound intensity of?					
Threshold of hearing	10^{-12} w/m^2	0.00000000001			
breathing	$10^{-9.5}$ w/m ²	0.000000003			
Threshold of pain	$10^{\circ} \text{ w/m}^{2}$	1.0			
Firecracker by ear	10^5 w/m^2	100,000.			
Pistol by ear	10^{6} w/m^{2}	1,000,000.			
These numbers don't give us a good "feel" for loudness.					

So we use something more useful: "Loudness".

Have you heard of "dB" (decibels)?

$$L(I) = 10 \log \frac{I}{10^{-12}}$$

An ambulance has a sound intensity of $10^0 \ \rm watts/sq\ meter$

How Loud is the ambulance? (in decibels)

$$L(I) = 10 \log \frac{10^{0}}{10^{-12}} \text{Properties of exponents!!!}$$

= 10 log 10⁰⁻⁽⁻¹²⁾

$$=10\log 10^{12}$$
 $=10*12=120db$

$$L(I) = 10 \log \frac{I}{10^{-12}}$$

The front row of a rock concert has a sound intensity of
 $I = 10^{-1}$ watts/met er²
What is the sound level in decibels on the front row of the
rock concert?
$$L = 10 \log \frac{10^{-1}}{10^{-12}} = 10 \log 10^{11}$$
$$= 110 \log 10$$
$$= 110 \text{ dB}$$

In chemistry, the <u>acidity of a water-based solution</u> is measured by the <u>concentration of hydrogen ions</u> in the solution (in moles per liter). The hydrogen-ion concentration is written [H ⁺].					
Upset stomach acid	1 mole/li	1.0			
Normal stomach acid	10 ⁻² mole/li	0.01			
rain	10 ⁻⁵ mole/li	0.00001			
Sea water	10 ⁻⁸ mole/li	0.00000001			
bleach	10 ⁻¹² mole/li	0.00000000001			
Sodium Hydroxide	10 ⁻¹⁴ mole/li	0.00000000000001			
These numbers <u>don't give us a good "feel</u> " for acidity.					
So we use something more useful: "pH".					

<u>Acidity</u> pH = - log [H ⁺]		
---	--	--

Don't freak out! This is just a simple log equation.

Upset stomach acid	1 mole/li	1
Normal stomach acid	10 ⁻² mole/li	2
rain	10 ⁻⁵ mole/li	5
Sea water	10 ⁻⁸ mole/li	8
bleach	10 ⁻¹² mole/li	12
Sodium Hydroxide	10 ⁻¹⁴ mole/li	14

pH is a much more useful way of measuring acidity that the concentration of the hydronium ion.

```
<u>Acidity</u> pH = - log [H<sup>+</sup>]

The "hydronium ion concentration of a solution is

[H^+] = 5.7 \times 10^{-11} \text{ mole/li}

What is the pH of the solution? pH = - log [5.7 \times 10^{-11}]

pH = 10.3

The pH of baking soda is 8.6.

What is the hydrogen ion concentration?

8.6 = - log [x] x = 10^{-8.6} mole/li

x = 2.5 \times 10^{-9} mole/li
```

Acidity

 $pH = - \log [H^+]$

The pH of baking soda is 8.6.

What is the hydrogen ion concentration?

8.6 =
$$-\log [x]$$

x = 10^{-8.6} mole/li
x = 2.5×10⁻⁹ mole/li

You deposit \$100 money into an account that pays 3.5% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year? $A(t) = A_0 (1 + \frac{r}{k})^{kt} \qquad A(5) = 100(1 + \frac{0.035}{12})^{12(5)}$ A(5) = \$119.09What is the doubling time for this account? $200 = 100(1 + 0.035/12)^{12t}$ $2 = (1.0029)^{12t}$

 $\log_{1.0029}(2) = 12t$ 239.4 = 12t t = 19.9 yrs

A bank compounds interest continuously. The annual interest rate is 5.5%. How long would it take for the money in the account to triple?

$$A(t) = A_0 e^{rt}$$
$$3A_0 = A_0 e^{0.055t}$$
$$3 = e^{0.055t}$$

1(1)

 $\ln 3 = 0.055t$

$$t = 19.97 \text{ yrs}$$

The "half life" of Carbon-14 (a radioactive isotope of carbon), is 5730 years. Calculate the decay rate for carbon-14. The decay rate is the "k" of the exponent of 'e'.

$$A(t) = A_0 e^{kt}$$

$$0.5A_0 = A_0 e^{k(5730)}$$

$$0.5 = e^{5730(k)}$$

$$\ln 0.5 = 5730k$$

$$k = -0.00012/yr$$