SM3-A HANDOUT 8-5 (Logarithmic and Exponential Modeling)

Rewrite the following numbers as a power of "e"
$2 \quad e^{x}=2$
$x=\ln 2$
$e^{0.693} \approx 2$
$1.05 \approx e^{0.049}$
$0.98 \approx e^{-0.020}$
$0.5 \approx e^{-0.693}$
-3 Not possible: Why?
$\ln (-3)$ doesn' t exist

We can rewrite the base of any exponential as a power of 'e'.

$$
\begin{array}{ll}
y=2^{x} & y=e^{k x} \\
y=\left(e^{k}\right)^{x} & e^{0.693} \approx 2 \\
e^{k}=2 & y=e^{0.693 x} \\
k=\ln 2 & \\
k \approx 0.693 &
\end{array}
$$

Boiling water $\left(100^{\circ} \mathrm{C}\right)$ is taken off the stove to cool in a room at $15^{\circ} \mathrm{C}$. After 9 minutes, the water's temperature is 50 C .
Write the modeling equation as a base 'b' exponential.

$$
T(t)=a(b)^{t}+k
$$

$$
T(t)=a(b)^{t}+15
$$

$$
\left(\frac{50-15}{85}\right)=(b)^{9}
$$

$$
\left(\frac{50-15}{85}\right)^{1 / 9}=b
$$

3) "nice point"

$$
b=0.906
$$

$50=85(b)^{9}+15$
4) Final equation

$$
T(t)=85(0.906)^{t}+15
$$

A hard-boiled egg at temperature $212^{\circ} \mathrm{F}$ is placed in $60^{\circ} \mathrm{F}$ water to cool. 5 minutes later the temperature of the egg is $95^{\circ} \mathrm{F}$. When will the egg be $75^{\circ} \mathrm{C}$?

A cake taken out of the oven at temperature of $350^{\circ} \mathrm{F}$. It is placed on in a room with an ambient temperature of $70^{\circ} \mathrm{F}$ to cool. Ten minutes later the temperature of the cake is $150^{\circ} \mathrm{F}$. When will the cake be cool enough to put the frosting on $\left(90^{\circ} \mathrm{F}\right)$?

Sound Intensity: the rate that energy is deposited on a surface by sound. Energy.

Unit of measure: $\frac{\text { watt }}{m^{2}}$
Lowest measureable sound intensity: $\quad 10^{-12} \mathrm{w} / \mathrm{m}^{2}$
Sound intensity that causes pain: $10 \mathrm{w} / \mathrm{m}^{2}$
10 is 1 trillion times larger than 10^{-12}

The logarand is the ratio of the actual sound intensity compared to the minimum detectable sound intensity

Don't freak out! This is just a simple log equation. But you must be able to handle properties of exponents!

$$
L(I)=10 \log \frac{I}{10^{-12}}
$$

An ambulance has a sound intensity of 10^{0}
watts/sq meter
How Loud is the ambulance? (in decibels)

$$
L(I)=10 \log \frac{10^{0}}{10^{-12}} \text { Properties of exponents!!! }
$$

$=10 \log 10^{0-(-12)}$
$=10 \log 10^{12}=10 * 12=120 d b$

What is the sound intensity of $\ldots . ?$ Threshold of hearing $10^{-12} \mathrm{w} / \mathrm{m}^{2}$ O dB breathing $10^{-9.5} \mathrm{w} / \mathrm{m}^{2}$ 25 dB Threshold of pain $10^{0} \mathrm{w} / \mathrm{m}^{2}$ 120 dB Firecracker by ear $10^{5} \mathrm{w} / \mathrm{m}^{2}$ 170 dB Pistol by ear $10^{6} \mathrm{w} / \mathrm{m}^{2}$ 180 dB Which units are easier? The sound intensity values aren't nearly as useful as the decibel values.

$$
L(I)=10 \log \frac{I}{10^{-12}}
$$

The front row of a rock concert has a sound intensity of

$$
I=10^{-1} \text { watts } / \text { met er }^{2}
$$

What is the sound level in decibels on the front row of the rock concert?

$$
\begin{aligned}
L=10 \log \frac{10^{-1}}{10^{-12}} & =10 \log 10^{11} \\
& =110 \log 10 \\
& =110 \mathrm{~dB}
\end{aligned}
$$

Rate: ratio of quantities
concentration: amount of a specific amount
material compared to the total volume. volume
Unit of measure: $\quad \frac{\text { moles }}{\text { liter }}$
Lowest measurable concentration of hydrogen ion: $\left[\mathrm{H}^{+}\right]$

$$
\left[H^{+}\right]=10^{-14} \mathrm{moles} / \mathrm{li}
$$

Maximum concentration: $1 \mathrm{~mole} / \mathrm{li}$
1 is 100 trillion times as large as 10^{-14}

Acidity $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Don't freak out! This is just a simple log equ
Upset stomach acid $1 \mathrm{~mole} / \mathrm{li}$ 1 Normal stomach acid $10^{-2} \mathrm{~mole} / \mathrm{li}$ 2 rain $10^{-5} \mathrm{~mole} / \mathrm{li}$ 5 Sea water $10^{-8} \mathrm{~mole} / \mathrm{li}$ 8 bleach $10^{-12} \mathrm{~mole} / \mathrm{li}$ 12 Sodium Hydroxide $10^{-14} \mathrm{~mole} / \mathrm{li}$ 14

pH is a much more useful way of measuring acidity that the concentration of the hydronium ion.

In chemistry, the acidity of a water-based solution is measured by the concentration of hydrogen ions in the solution (in moles per liter). The hydrogen-ion concentration is written $\left[\mathrm{H}^{+}\right]$.

Upset stomach acid	$1 \mathrm{~mole} / \mathrm{li}$	1.0
Normal stomach acid	$10^{-2} \mathrm{~mole} / \mathrm{li}$	0.01
rain	$10^{-5} \mathrm{~mole} / \mathrm{li}$	0.00001
Sea water	$10^{-8} \mathrm{~mole} / \mathrm{li}$	0.00000001
bleach	$10^{-12} \mathrm{~mole} / \mathrm{li}$	0.000000000001
Sodium Hydroxide	$10^{-14} \mathrm{~mole} / \mathrm{li}$	0.00000000000001

These numbers don't give us a good "feel" for acidity.
So we use something more useful: "pH".

Acidity $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

The "hydronium ion concentration of a solution is

$$
\left[H^{+}\right]=5.7 \times 10^{-11} \mathrm{~mole} / \mathrm{li}
$$

What is the pH of the solution? $\mathrm{pH}=-\log \left[5.7 \times 10^{-11}\right]$

$$
\mathrm{pH}=10.3
$$

The pH of baking soda is 8.6.
What is the hydrogen ion concentration?

$$
\begin{gathered}
8.6=-\log [\mathrm{x}] \quad x=10^{-8.6} \mathrm{~mole} / \mathrm{li} \\
x=2.5 \times 10^{-9} \mathrm{~mole} / \mathrm{li}
\end{gathered}
$$

Acidity

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

The pH of baking soda is 8.6.
What is the hydrogen ion concentration?

$$
\begin{aligned}
& 8.6=-\log [\mathrm{x}] \\
& x=10^{-8.6} \mathrm{~mole} / \mathrm{li} \\
& x=2.5 \times 10^{-9} \mathrm{~mole} / \mathrm{li}
\end{aligned}
$$

You deposit \$100 money into an account that pays 3.5\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$
\begin{aligned}
A(t)= & A_{0}(1+r / k)^{k t} \quad A(5)=100(1+0.035 / 12)^{12(5)} \\
& A(5)=\$ 119.09
\end{aligned}
$$

What is the doubling time for this account?

$$
\begin{aligned}
& 200=100(1+0.035 / 12)^{12 t} \\
& 2=(1.0029)^{12 t} \\
& \log _{1.0029}(2)=12 t \quad 239.4=12 t \quad t=19.9 \mathrm{yrs}
\end{aligned}
$$

The "half life" of Carbon-14 (a radioactive isotope of carbon), is 5730 years. Calculate the decay rate for carbon-14. The decay rate is the " k " of the exponent of ' e '.

$$
\begin{aligned}
& A(t)=A_{0} e^{k t} \\
& 0.5 A_{0}=A_{0} e^{k(5730)} \\
& 0.5=e^{5730(k)} \\
& \ln 0.5=5730 k \\
& k=-0.00012 / y r
\end{aligned}
$$

