SM3-A HANDOUT 8-3 (Solving Log \& Exponential Equations)
Linear Equation:
What does "solve" a single variable equation mean?
Find the value of ' x ' that $3 x+2=4 x-5$ "Isolate the variable" subtract $\underline{3 x}$ from both sides \square add $\underline{5}$ to both sides \square

\(\left.$$
\begin{array}{|l|l|}\hline \text { Radical Equation: } & \begin{array}{l}\text { "Isolate the radical" } \\
\sqrt{3 x-2}-1=3\end{array} \\
\begin{array}{ll}\text { "Undo the radical" }\end{array} \\
\begin{array}{ll}\text { add } \underline{1} \text { to both sides } \\
\text { square both sides }\end{array}
$$ \\

add 2 both sides\end{array}\right]\)| Divide by 3 both sides |
| :--- |
| Check your solution |

Your turn:

 "Isolate the radical" "Undo the radical"Solve: $\quad \sqrt{3 x-5}=x-3$

Solving an Exponential Equation: The easiest problem
$2^{x}=2^{4-x}$ Exponents have to be equal to each other!
$\begin{array}{rrr}x=4-x & x=2 \\ +\mathrm{x} & +\mathrm{x} & \end{array}$
$+\mathrm{x} \quad+\mathrm{x} \quad$ Check your answer!
$2 x=4 \quad 2^{2}=2^{4-2}$
$\div x \quad \div x$
$x=2$
$7^{2 x+1}=7^{13-4 x}$
$2 x+1=13-4 x$
$+4 x \quad+4 x$
$6 x+1=13$
$\begin{array}{ll}-1 & -1\end{array}$
$6 x=12$

\[

\]

$$
\left(9^{2 x}=3^{2}\right)^{2 x}=3^{4 x}
$$

Change the base of the power as indicated:

$$
\begin{aligned}
& 27^{1}=3^{?} \\
& 16^{2}=4^{?} \\
& 25^{2 x}=5^{?}
\end{aligned}
$$

Solving using "convert to same base"
$2^{4 x-1}=8^{x-1} \quad$ "convert to same base"
$2^{4 x-}=\left(2^{3}\right)^{x-1} \quad$ Exponent of a power
$4 x-1$ Exponent Property
$2^{4 x-1}=2^{3 x-3} \quad x=-2$
$4 x-1=3 x-3$
Check your answer!
$4 x-1=3 x-3$
$-3 \mathrm{x} \quad-3 \mathrm{x}$
$2^{4(-2)-1}=8^{-2-1}$

$$
x-1=-3
$$

$$
2^{-9}=8^{-3}
$$

$+1 \quad+1$

$$
\left(2^{-9}=8^{-3}\right)^{-1}
$$

$$
2^{9}=8^{3}
$$

$$
512=512
$$

Sometimes you can't rewrite the exponentials with the same bases so you have no choice. Use log of a power property.

\[

\]

$$
\begin{aligned}
& \text { Solving using "log of a power" property } \\
& 8^{x+2}=4^{x-2} \quad \text { Take natural log of both side } \\
& \ln 8^{x+2}=\ln 4^{x-2} \quad \text { "log of pwr property" } \\
& \begin{array}{cc}
(x+2) \ln 8=(x-2) \ln 4 & 3 x+6=2 x-4 \\
\div \ln 8 \quad \div \ln 8 & -2 x-6 \quad-2 x-6 \\
(x+2)=(x-2) \frac{\ln 4}{\ln 8} \text { simplify } & x=-10
\end{array} \\
& x+2=(x-2)(0.6666666) \text { simplify } \\
& x+2=(x-2)\left(\frac{2}{3}\right) \\
& 3(x+2)=(x-2)\left(\frac{2}{3}\right)(3)
\end{aligned}
$$

Solve for ' x ' (how do you get the exponent ' x ' all by itself?

$$
\begin{array}{cc}
\begin{array}{c}
8^{x}-2=5 \\
+2 \\
+2
\end{array} & \text { "Isolate the exponential" } \\
8^{x}=7 & \text { "convert to a log" } \\
x=\log _{8} 7 & \begin{array}{c}
\text { Change of base } \\
\text { formula }
\end{array}
\end{array} \begin{array}{rl}
x=\frac{\log 7}{\log 8} \\
x=0.9358 & x=0.9358 \\
\hline
\end{array}
$$

The easiest \log equation.

$$
\begin{aligned}
\log (x+3) & =\log (2 x-1) \\
x+3 & =2 x-1 \quad \rightarrow x=2
\end{aligned}
$$

Why does this work?

$$
\begin{array}{lcl}
\mathrm{y}=\mathrm{y} & \mathrm{y}=\log (x+3) & 10^{y}=x+3 \\
& y=\log (2 x-1) & 10^{y}=2 x-1
\end{array}
$$

Substitution Property

$$
\begin{gathered}
x+3=10^{y}=2 x-1 \\
x+3=2 x-1
\end{gathered}
$$

Solve using "undo the exponential" $3^{2 x-1}+5=7$ "Isolate the exponential"

Solve: $\quad \log (x-5)=\log (2 x+3)$
Remember to check for extraneous solutions by plugging the
solution for ' x ' back into the original equation.
Can you have a negative logarand?

$$
\begin{array}{ll}
\log _{2} 5^{x}=5 & \text { Power property of logarithms } \\
x \log _{2} 5=5 & \rightarrow \text { Change of base } \\
2.32192 x=5 & x \frac{\ln 5}{\ln 2}=5 \\
\hdashline 2.32192 \div 2.32192 & \begin{array}{l}
\text { Use inverse } \\
\text { property of } \\
\text { multiplication }
\end{array} \\
x=2.1534 & x=5 \frac{\ln 2}{\ln 5} \\
x & =2.1534
\end{array}
$$

Solving Logs requiring condensing the product. $\log 2 x+\log (x-5)=2 \quad$ "condense the product" $\log 2 x(x-5)=2 \quad$ "undo the logarithm" $10^{2}=2 x(x-5) \quad$ Quadratic \rightarrow put in standard form $100=2 x^{2}-10 x$
$2 x^{2}-10 x-100=0 \quad$ Divide both sides by ' 2 '
$x^{2}-5 x-50=0 \quad$ factor
$(x-10)(x+5)=0 \quad$ Zero product property

$$
x=10,-5
$$

```
Check for extraneous solutions: x=10,-8
log}2x+\operatorname{log}(x-5)=
log(2*10)+log(10-5)=2
log(20)+log(5)=2 All logarands are positive © 
log100=2 "Condense the product" 102 = 100
    Checks
log(2)(-5) + log(-5 - 5) = 2
log}(-10)+\operatorname{log}(-10)=2\quad\mathrm{ Negative logarands *
    x=5 is an extraneous solution.
```

```
            More complicated Logarithmic Equations
2+ 妿2}\mp@subsup{5}{}{x-2}=7\quad"Isolate the logarithm"
-2 -2
    log}2\mp@subsup{5}{}{x-2}=5 "undo the logarithm"
(x-2) 矢年5=5
```



```
    x-2 = 2.15338
    +2 +2 Add '2' to both sides.
    x=4.1524
```

$3+\log _{4} 3^{2 x-1}=6$
$-7+2 \ln 4^{x-3}=5$
$\log _{4}(5 x-1)=3$
$\log _{2} 4 x+\log _{2} 3=6$

More complicated Logarithmic Equations
$2+\log _{2} 5^{x-2}=7 \quad$＂Isolate the logarithm＂
-2
$\log _{2} 5^{x-2}=5 \quad$＂undo the logarithm＂
$(x-2) \log _{2} 5=5$ $\div \log _{2} 5 \quad \div \log _{2} 5$ $x-2=2.15338$ $+2 \quad+2 \quad$ Add＇2＇to both sides． $x=4.1524$

 \(\log _{4}(5 x-1)=3\)