SM3-A HANDOUT 5-6 (Log of a Quotient Property of Logarithms
The Change of Base formula, Simplifying Logarithms)1. $f(x) = 3(4)^{x-1} + 5$ Find $f^{-1}(x)$ 2. $\log_3 x^4 y$
Expand the log:3. $3\log 2 + 2\log x + \log 3 + 5\log y$
Condense the log:

4.
$$7 = 2(3)^{x}$$

Convert to a logarithm:
5. $3\log_{5}(x-6) = 6$
Convert to an exponential;
6. $f(x) = 3\log(x+2) - 5$
What is the
Domain and range?

7.
$$f(x) = 2\log(2x-4) - 6$$
What is the logarand?

8. What is the asymptote?

9. What do I mean when I say: "A log is an exponent"?

```
Log of a Product Property of Logarithms:

log_b (RS) = log_b R + log_b S

log_2 15 = log_2 3 + log_2 5

log of a product = sum of the logs of the factors.

<math display="block">Log of Power Property of Logarithms

c r log_b R^{O} \rightarrow c log_b R

log_2 3^4

log 32
```


Change-of-Base Formula for Logarithms

$$\log_{c} = \frac{\log_{b} @}{\log_{b} @}$$
Change to log base 10 or base 'e'
(your calculator can do these).
Convert to base 10.

$$\log_{4} S = \frac{\log_{10} S}{\log_{10} @} = \frac{0.699}{0.6021} = 1.161$$

$$\log_{4} S = \frac{\ln S}{\ln @} = \frac{1.609}{1.386} = 1.161$$

