SM3-A HANDOUT 5-6 (Log of a Quotient Property of Logarithms The Change of Base formula, Simplifying Logarithms)

1. $f(x)=3(4)^{x-1}+5$ Find $f^{-1}(x)$
2. $\log _{3} x^{4} y$

Expand the log:
3. $3 \log 2+2 \log x+\log 3+5 \log y$ Condense the log:
4. $7=2(3)^{x}$

Convert to a logarithm:
5. $\quad 3 \log _{5}(x-6)=6$

Convert to an exponential;
6. $f(x)=3 \log (x+2)-5$

What is the
Domain and range?
7. $f(x)=2 \log (2 x-4)-6$

What is the logarand?
8. What is the asymptote?
9. What do I mean when I say: "A log is an exponent"?

Log of a Product Property of Logarithms:
$\log _{b}(R S)=\log _{b} R+\log _{b} S$
$\log _{2} 15=\log _{2} 3+\log _{2} 5$
$\underline{\log \text { of a product }}=\underline{\text { sum }}$ of the logs of the factors.
Log of Power Property of Logarithms
$c \rightarrow \log _{b} R^{-} \rightarrow c \log _{b} R$
$\log _{2} 3^{4}$

$\log 32$

$$
\frac{x^{2}}{y^{3}} \frac{\text { Using properties of exponents: rewrite this so }}{\text { the ' } y \text { ' term is } \underline{\text { NOT }} \text { in the denominator. }} x^{2} y^{-3}
$$

$$
\log _{3}\left(\frac{5}{2}\right)=\log _{3}\left(5 * 2^{-1}\right) \quad \text { Negative Exponent Property }
$$

Log of a Product Property

Log of a Power Property
\square Definition of Subtraction: (adding a negative is subtraction)

$$
\begin{aligned}
& \text { Log of a Quotient Property } \\
& \log _{b}\left(\frac{R}{S}\right)=\log _{b} R-\log _{b} S \\
& \log _{3}\left(\frac{5}{2}\right) \text { "expand the quotient" }
\end{aligned}
$$

\square
$\ln 8-\ln 3$ "condense the quotient"
"Negative Log" \rightarrow denominator of the logarand

$\log \frac{4}{5}$Expand the Quotient $\ln \frac{3}{7} \square$ $\log _{4} 5-\log _{4} 2$ $\log _{5} 8-\log _{5} 16$ Condense the quotient \square

Expand the Logarithm $\begin{aligned} \log \left(\frac{2 x}{3 y^{5}}\right) & =\log 2 x-\log 3 y^{5} \begin{array}{c} \text { The } \\ \text { denominator } \\ \text { is a product! } \end{array} \\ & =\log 2 x-(\log 3+5 \log y) \\ & \text { Distributive property! } \end{aligned}$
Logs of factors in the numerator will be positive. Logs of factors in the denominator will be negative.

$$
\begin{aligned}
& \text { Change-of-Base Formula for Logarithms } \\
& \log _{\mathscr{C}} \varrho=\frac{\log _{b} @}{\log _{b}(C)} \quad \begin{array}{l}
\text { Change to log base 10 or base 'e' } \\
\text { (your calculator can do these). }
\end{array} \\
& \text { Convert to base } 10 . \\
& \log _{4} 59=\frac{\log _{10}(5)}{\log _{10}(4)}=\frac{0.699}{0.6021}=1.161 \\
& \log _{4} 5=\frac{\ln (5)}{\ln (4)}=\frac{1.609}{1.386}=1.161
\end{aligned}
$$

Simplify	Using Change of base:
$\log _{2} 2$	$\log _{2} 2=\frac{\log 2}{\log 2}=1$
$\log _{2} 2=x$	
$2^{x}=2$	
$x=1$	

