SM3-A HANDOUT 7-7 (The Logarithm Function)

Find the Inverse: exchange the locations of ' x ' and ' y ' in the equation then solve for ' y '.
$f(x)=(x-2)^{2}$
Domain: The input values (that have corresponding outputs)
Range: The output values (that have corresponding inputs)
Inverse of a Function: A function resulting from an "exchange" of the inputs and outputs.

$f(x)$: Domain, Range

$f^{-1}(x)$: Domain $=$ range of $\mathrm{f}(\mathrm{x})$
Range $=$ domain of $f(x)$

What is a logarithm?

A logarithm is another way of writing an exponent.

$$
2^{x}=8 \quad \log _{2} 8=x
$$

x is the exponent
Log = exponent

Both of these equations are saying the same
thing:
" 2 raised to what power is 8 ?"

Common Logarithm: has a base of 10.

$$
\log _{10} 100=x
$$

We usually write it in this form: $\quad \log 100=x$
Natural Logarithm: has a base of e.
$\log _{e} 2.718=1$
We always write it in this form: $\quad \ln 2.718=1$

Find $\log 8$ on your calculator. $\quad \log 8=0.903$

Find $\log _{2} 17$ on your calculator. $\quad \log _{2} 17=4.09$

Estimate the value of the \log (without using your calculator) $\log _{3} 30$
$\log _{5} 30$
$\log _{6} 30$

\square

Finding the Inverse $f^{-1}(x)=$?
$f(x)=(3)^{x-1}+2$

Finding the Inverse $\quad f^{-1}(x)=$?
$f(x)=\left(3 x^{x-1}+2 f^{-1}(x)=\log _{3}(x-2)+1\right.$
Right $1 \rightarrow$ up 2 Right $2 \rightarrow$ up 1
Finding the Inverse $f^{-1}(x)=$? $f(x)=2 \log _{2}(x+1)$

