

<u>Find the Inverse</u>: exchange the locations of 'x' and 'y' in the equation then solve for 'y'.

 $f(x) = (x-2)^2$

<u>Domain</u>: The input values (that have corresponding outputs) Range: The output values (that have corresponding inputs)

Inverse of a Function: A function resulting from an "exchange" of the inputs and outputs.

f(x): Domain, Range

 $f^{-1}(x)$: Domain = range of f(x)

Range = domain of f(x)

<u>Common Logarithm</u> : has a base of <u>10.</u>	
$\log_{10} 100 = x$	
We <u>usually</u> write it in this form:	$\log 100 = x$
<u>Natural Logarithm</u> : has a base of <u>e.</u>	
$\log_e 2.718 = 1$	
We <u>always</u> write it in this form: 1	n 2.718 = 1

Finding the Inverse
$$f^{-1}(x) = ?$$

 $f(x) = 3^x$ Shift 'x' and 'y'
 $x = 3^y$ "Undo the Exponential" (Convert it to a log)
"A log is an exponent"
 $y = \log_3 x$ $f^{-1}(x) = \log_3 x$

Finding the Inverse
$$f^{-1}(x) = ?$$

 $f(x) = (3)^{x-1} + 2$

Finding the Inverse
$$f^{-1}(x) = ?$$

 $f(x) = (3)^{x-1} + 2$ $f^{-1}(x) = \log_3(x-2) + 1$
Right $1 \rightarrow up 2$ Right $2 \rightarrow up 1$

Finding the Inverse $f^{-1}(x) = ?$ $f(x) = 2 \log_2(x+1)$