SM3-A HANDOUT 7-5 Review the Exponential Function

The "Parent" Exponential Function

$$
y=b^{x} \text { base }
$$

$$
\begin{array}{ll}
y=2^{x} & \text { (base ___ exponential function) } \\
y=3^{x} & \text { (base ___ exponential function) }
\end{array}
$$

$$
y=\left(\frac{1}{2}\right)^{\mathrm{x}} \quad \text { base }
$$

\qquad exponential function)

The base MUST BE \qquad and \qquad equal \qquad .

$$
b=
$$

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)?
As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

x	$2^{(~)}$	y	'y' gets closer and closer to zero but never reaches zero.	
-1	$2^{(-1)}$	$1 / 2$	$f(-1)=1 / 2$	
$f(-2$	$2^{(-2)}$	$1 / 4$	$f(-2)=1 / 4$	
-3	$2^{(-3)}$	$1 / 8$	$f(-3)=1 / 8$	
-4	$2^{(-4)}$	$1 / 16$	$f(-4)=1 / 16$	
-5	$2^{(-5)}$	$1 / 32$	$f(-5)=1 / 32$	

Initial Value: (of the exponential) is the vertical stretch factor (for problems with no up/down shifts)
"Initial Value" is a term that is applicable to modeling of real world situations.

$C(t)=0.5 \mathrm{gm} /$ liter $(0.73)^{t}$
$A(t)=10 \mathrm{gm}(0.999879)^{t}$

Initial Value: (of the exponential) is the vertical stretch factor (for problems with no up/down shifts)

If in input is time ("stopwatch time")
the initial value occurs when $t=0$.

$$
\begin{aligned}
& f(t)=3(2)^{t} \quad \text { Domain: } \mathrm{x}=[0, \infty) \\
& f(0)=3(2)^{0}=?
\end{aligned}
$$

