SM3-A HANDOUT 7-3 (Radicals and Rational Exponents)

$\sqrt{3}$ What number is equivalent to the square root of 3 ?
$x=\sqrt{3}$ Square both sides of the equation
$(x)^{2}=(\sqrt{3})^{2} \quad x^{2}=3$
$x=\sqrt{3}$ is an equivalent statement to $x^{2}=3$

$$
\begin{aligned}
\sqrt{3} & \approx 1.732 \quad \text { There is no equivalent number } \\
& \approx 1.7321 \quad \text { The decimal, is just an approximation. } \\
& \approx 1.73205 \\
& \approx 1.732051 \\
& \approx 1.7320508 \ldots
\end{aligned}
$$

$x=\sqrt[3]{4} \quad$ The " $\underline{\text { rrd root of } 4 \text { " means: }}$
\square

Adding and subtracting radicals

Can these two terms be combined using addition? $3 x+2 x$
Write 3 x as repeated addition $x+x+x$
Write 2 x as repeated addition $\quad x+x$

$$
3 x+2 x \rightarrow x+x+x+x+x \rightarrow 5 x
$$

When multiplication is written as repeated addition, "like terms" look exactly alike.

Define "like powers" "Same base, same exponent".

$$
3 x^{4}+2 x^{4} \rightarrow 5 x^{4}
$$

Define "like radicals" "Same radicand, same index number". $3 \sqrt{6}+2 \sqrt{6} \rightarrow 5 \sqrt{6}$

Which of the following are "like radicals" that can be added?

$\sqrt{3}+\sqrt{2} \rightarrow \sqrt{3+2}=\sqrt{5} \quad$ Are they equivalent?

If this is a property of radicals, it must work for every combination of numbers.

$$
\begin{aligned}
& \sqrt{4}+\sqrt{9} \rightarrow \sqrt{13} \\
& \sqrt{4}+\sqrt{9} \rightarrow 2+3 \rightarrow 5 \quad \neq \sqrt{13}
\end{aligned}
$$

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify the following:

$$
\begin{array}{ccc|}
\hline 3 \sqrt{8} * 5 \sqrt{2} & 2 \sqrt{3} * 3 \sqrt{5} & \square \\
3 * \sqrt{8} * 5 * \sqrt{2} & 7 \sqrt{6} * 2 \sqrt{5} & \square \\
3 * 5 * \sqrt{8} * \sqrt{2} & & \\
15 * \sqrt{8} * \sqrt{2} & \sqrt{5}+3 \sqrt{5} & \square \\
15 * \sqrt{16} & 7 \sqrt{6}+2 \sqrt{6} & \square \\
15 * 4=60 & &
\end{array}
$$

Simplify radicals: use the Product of Radicals Property to factor ("break apart") the radical into a "perfect square" times
a number. $\quad \sqrt{a} * \sqrt{b}=\sqrt{a b}$

Can we add "unlike" radicals?

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify $7 \sqrt{6}+2 \sqrt{24} \rightarrow 7 \sqrt{6}+(2 * \sqrt{4} * \sqrt{6})$

$$
\begin{aligned}
& \rightarrow 7 \sqrt{6}+(2 * 2 * \sqrt{6}) \\
& \rightarrow 7 \sqrt{6}+4 \sqrt{6} \\
& \rightarrow 11 \sqrt{6}
\end{aligned}
$$

$$
-3 \sqrt{32}+2 \sqrt{8}
$$

\square

Rationalizing the denominator: using mathematical properties to change an irrational number (or imaginary number) in the denominator into a rational number.
We take advantage of the idea:
$\sqrt{2} * \sqrt{2}=\sqrt{2 * 2}=\sqrt{4}=2$
$\sqrt{3} * \sqrt{3}=\sqrt{3 * 3}=\sqrt{9}=3$
$\frac{1}{\sqrt{2} * \frac{\sqrt{2}}{\sqrt{2}}} \rightarrow \frac{\sqrt{2}}{2}$
Identity
Property of multiplying by ' 1 ' doesn't change Multiplication the number.

Another way to Simplify Radicals Factor, factor, factor!!!

What is the factor that is used (Index number) ' 2 ' times under the radical?

Bring the out factor that is used 2 times.

$$
\rightarrow 3 \sqrt[2]{2 * 3} \rightarrow 3 \sqrt{6}
$$

Using Properties of Exponents to reduce the writing:

$$
\begin{aligned}
\sqrt[4]{32 x^{6}} & \rightarrow \sqrt[4]{32 * x^{4} * x^{2}} \\
& \rightarrow x \sqrt[4]{32 * x^{2}} \\
& \rightarrow x \sqrt[4]{2^{4} * 2^{1} * x^{2}} \\
& \rightarrow 2 x \sqrt[4]{2 x^{2}}
\end{aligned}
$$

Radicals CAN be written as Powers

Coefficient \longrightarrow Coefficient
Radicand \longrightarrow Base
Index \longrightarrow Denominator of the Exponent
The index number is the denominator of the exponent.

What happens if there is a product under the radical?

$$
\begin{aligned}
\sqrt[2]{x y} & =(x y)^{1 / 2} \\
5 \sqrt[3]{3 x} & =5(3 x)^{1 / 3} \\
2 \sqrt[4]{21 m n} & =2(21 m n)^{1 / 4}
\end{aligned}
$$

How did we show that the index number applied to the entire product (radicand) when re-written in "power form"?

Power of a product \rightarrow product inside parentheses with an exponent.

Are radicals related to powers?

$$
\begin{array}{ll}
3^{1 / 2}=\sqrt[2]{3} & 3 \sqrt[2]{y}=3 y^{1 / 2} \\
5^{1 / 3}=\sqrt[3]{5} & 5 \sqrt[3]{7}=5(7)^{1 / 3}
\end{array}
$$

$$
\sqrt[2]{x}=x^{1 / 2}
$$

Multiplication (by a coefficient) is "repeated addition." This explains why coefficients of

$$
\sqrt[3]{7}=7^{1 / 3}
$$ radicals become coefficients of powers.

None of these
have
coefficients!

$$
\begin{gathered}
\sqrt{y}=y^{1 / 2} \\
3 \sqrt[2]{y}=\sqrt{y}+\sqrt{y}+\sqrt{y} \\
3 y^{1 / 2}=y^{1 / 2}+y^{1 / 2}+y^{1 / 2}
\end{gathered}
$$

"Exponential Form" that has both a numerator and denominator The exponent can be written as a rational number.

$x(2)$ Numerator: Exponent of the base.	Doot of the base.
$\sqrt[3]{2^{2}}$ Radical Form	$=2^{2 / 3}$
Exponential Form	

Multiply Powers Property

$$
y^{2} * y^{3}=?=y^{2+3}=y^{5}
$$

When multiplying "same based powers" add the exponents.

$$
x^{\frac{2}{3}} * x^{\frac{3}{4}} \rightarrow x^{\frac{2}{3}+\frac{3}{4}} \quad \rightarrow x^{\frac{17}{12}}
$$

Yes, you must be able to add fractions
Exponent of a Power Property

$$
\left(y^{2}\right)^{3}=? \quad=y^{2 * 3}=y^{6}
$$

When multiplying "same based powers" add the exponents.

$$
\left(y^{1 / 2}\right)^{2 / 3}=y^{\frac{1}{2} \cdot \frac{2}{3}}=y^{\frac{1}{3}}
$$

