SM3-A HANDOUT 7-2 (Exponents, Part-2)

Name the 3 properties of exponents we learned.

\square

$$
\begin{aligned}
& \text { Negative Exponent Property } \\
& 4 x^{-2}=\frac{4 \sqrt{x^{-2}}}{1}=\frac{4}{x^{2}}
\end{aligned}
$$

Possible errors

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

$$
\frac{4 * x^{-2}}{1} \neq \frac{1}{4 x^{2}}
$$

Power of a Quotient Property

$$
\left(\frac{x}{y}\right)^{2}=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)=\frac{x^{2}}{y^{2}}
$$

General form of
Power of a quotient: $\quad\left(\frac{x}{y}\right)^{m}=\frac{x}{y^{m}}$
This is another silly property. Isn't it just exponent of a product?

This is really a silly property. We don't even need to memorize this as a separate property. It's just the negative exponent property.

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Zero Exponent Property

Any base raised to the zero power simplifies to one.

$$
\begin{array}{ll}
10^{3}=1000 & 2^{0}=1 \\
10^{2}=100 & (2 x)^{0}=1 \\
10^{1}=10 & 2 x^{0}=2 * 1=2 \\
10^{0}=1 &
\end{array}
$$

Combination: (1) Negative Exponent, (2) Product of Powers, (3) Power of a Power, (4) Power of a Quotient

$$
\begin{gathered}
\left(\frac{3 x^{2} \nabla}{2 x^{-4} y}\right)^{2}=\left(\frac{3 x^{2} \sqrt{4}}{2 y}\right)^{2}=\left(\frac{3 x^{6}}{2 y}\right)^{2}=\left(\frac{3^{1} x^{6}}{2^{1} y^{1}}\right)^{2} \\
=\frac{3^{*^{*} 2} x^{6^{* 2}}}{2^{1^{*} 2} y^{1^{*}}}=\frac{3^{2} x^{12}}{2^{2} y^{2}}=\frac{9 x^{12}}{4 y^{2}}
\end{gathered}
$$

"Grab and drag"
Product of powers: add the exponents of same based powers

$$
=\frac{32 x^{8}}{y^{17}}
$$

$\left(w^{-2}\right)^{5}$	\square
$\frac{1}{2}\left(3 x^{-3}\right)^{2}$	\square
$\left(\frac{2 x^{2}}{3 y^{-2} z^{3}}\right)^{-2}$	\square
$\left(\frac{5 x^{4}}{3 y^{-2}}\right)^{-1}$	\square

Do you "grab and drag (up or down)?? It doesn't matter!!!! $\frac{3 x^{2}}{2\left(x^{-4}\right) y}=\frac{3 x^{2} x^{4}}{2 y}=\frac{3 x^{2+4}}{2 y}=\frac{3 x^{6}}{2 y}$ exponents of like-based powers $\frac{\left.3 x^{2}\right)}{2 x^{-4} y^{2}}=\frac{3}{2 x^{-4} x^{-2} y}=\frac{3}{2 x^{-4-2} y}=\frac{3}{2\left(x^{-6}\right) y}=\frac{3 x^{6}}{2 y}$ Product of powers property: add the exponents of like-based powers Make sure when you're all done, there are NO NEGATIVE EXPONENTS remaining.

