Math-3A HANDOUT 6-1 (Compositions of Functions)

1. Is the following relation a function?

$$
(-2,5),(5,6),(-2,6),(7,6)
$$

2. Is the following relation a function?

Does the graph of the relation pass the
\qquad

Compositions of Functions $\quad f(x)=2 x \quad \rightarrow f(3)=?$

Means: "replace ' x ' in the function with a 3.

1. Replace the ' x ' with a set of parentheses.

$$
f(3)=2()
$$

2. Put the input value ' 3 ' into the parentheses.

$$
f(3)=2(3)
$$

3. Find the output value.
$f(3)=6$

Function Notation $\quad y=f(x) \quad$ " y is a function of x "
' y ' equals "math being done to" ' x '
A function is a rule that matches input values to output values.
$f(x)=2 x+1$

(Input)	(rule)	(output)	
x	$2 x+1$	y	$f(2)=5$
2	$2(2)+1$	5	
3	$2(3)+1$	7	$f(3)=7$

Compositions of Functions

$$
f(x)=x^{2}-3 x+2 \quad \rightarrow \mathrm{f}(2)=?
$$

1. Replace the ' x ' with a set of parentheses.

$$
f(x)=()^{2}-3()+2
$$

2. Put the input value ' 2 ' into the parentheses.

$$
f(x)=()^{2}-3()+2
$$

3. Find the output value.
$f(2)=$ \qquad Cool, we found a

$$
\begin{gathered}
f(x)=x^{3}-1 \quad f(-2)=? \\
f(x)=2 x^{1 / 2} \quad f(9)=? \\
f(x)=\frac{2(x-4)}{x^{2}+x-20} \quad f(-2)=?
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Your turn: } \\
\text { input the expressions }
\end{array} \\
& f(2)=? \quad=5 \\
& f\left(x^{3}\right)=? \\
& f(x+2)=? \\
& f(-2 x+3)=?
\end{aligned}
$$

$$
f(x)=x^{2}+1
$$

$f(x)=3 x-1$		
(Input) x	(rule) $3 \mathrm{x}-1$	(output) $\mathrm{f}(\mathrm{x})$
2	$3(2)-1$	
x^{2}	$3($	$)-1$
$x+2$	$3($	$)-1$
$3-2 x$	$3($	$)-1$

Compositions of Functions

$g(x)=x^{2}$

Let's use $\mathrm{f}(\mathrm{x})$ os the input to $\mathrm{g}(\mathrm{x}) \quad g(f(x))=$?

$$
\begin{array}{cc}
g(. .)=(. .)^{2} & \begin{array}{l}
\text { 1. Replace the ' } x \text { ' with } \\
\text { a set of parentheses. }
\end{array} \\
g(2 x)=(2 x)^{2} & \text { 2. Put the input value " } 2 x \text { ' } \\
\text { into the parentheses. }
\end{array}
$$

$$
\begin{aligned}
& \text { Composition of Functions } \\
& \mathrm{f}(\mathrm{x})=2 \mathrm{x}+1 \quad \mathrm{~g}(\mathrm{x})=3 \mathrm{x}+2 \quad \mathrm{~h}(\mathrm{x})=\mathrm{x}+5 \\
& f(g(x))=? \\
& h(g(x))=? \\
& h(f(x))=? \\
& g(h(x))=? \\
& f(f(x))=?
\end{aligned}
$$

