Math-3A
 Lesson 4-7 Holes in the Graph of the Reciprocal Function

> Divide

$$
g(x)=\frac{2 x}{x-3} \quad g(x)=2+\frac{6}{x-3}
$$

Zeroes of the numerator are x-intercepts (or are imaginary)

$$
g(0)=2+\frac{6}{0-3} \quad g(0)=2+\frac{6}{-3}=0
$$

Zeroes of the denominator are "excluded values"

For the reciprocal function, the zeroes of the denominator are vertical asymptotes.

$$
x=3
$$

What are the equations of:
a) Horizontal asymptote? Range = ?
b) Vertical asymptote? Domain = ?

$$
\begin{array}{ll}
g(x)=\frac{1}{x}+7 & \text { a) } y=7, \text { range: } y \neq 7 \\
& \text { b) } x=0, \text { domain: } x \neq 0
\end{array}
$$

$f(x)=\frac{-7}{(x+3)}+5 \quad$ a) $y=5$, range: $y \neq 5$
$f(x)=\frac{7}{(x+3)}+5 \quad$ b) $\mathrm{x}=-3$, domain: $\mathrm{x} \neq-3$
$h(x)=\frac{1}{3(x-2)}-4$
a) $y=-4$, range: $y \neq-4$
b) $x=2$, domain: $x \neq-2$

$$
f(x)=\frac{x+3}{x-4} \quad \text { Domain }=? \quad x \neq 4
$$

x-intercept? \rightarrow are "zeroes" of the numerator $(-3,0)$ vertical asymptote? \rightarrow are "zeroes" of the denominator $x=4$ y-intercept? $\rightarrow \mathrm{f}(0)=? \quad f(0)=\frac{0+3}{0-4} \quad(0,-3 / 4)$
Horizontal asymptote?
\rightarrow Is the "quotient" of division

Your turn: Find the domain, x-intercepts, holes, vertical asymptotes, and the horizontal asymptote: (HINT: simplify

$$
\begin{array}{ll}
g(x)=\frac{x^{2}-1}{x^{2}-6 x-7} & \text { 童-intercept: } \mathrm{x}=1 \\
g(x)=\frac{(x+1)(x-1)}{(x+1)(x-7)} & \text { Vele: } \mathrm{x}=-1 \\
\text { Hortical asymptote: } \mathrm{x}=7 \\
\text { Horizontal asymptote: } \mathrm{y}=1
\end{array}
$$

Domain: $\quad x \neq \pm 1$

$$
g(x)=\frac{(x-1)}{(x-7)}
$$

$$
g(x)=\frac{x^{2}-1}{x^{2}-6 x-7}=\frac{(x-1)}{(x-7)}
$$

Domain: $x \neq \pm 1$
hole: $x=-1 \rightarrow(-1,1 / 4)$
x-intercept: $x=1$
Vertical asymptote: $x=7$
Horizontal asymptote: $\mathbf{y}=1$

