```
Vocabulary
SM3-A HANDOUT 3-1 (Analyzing Polynomials)
    cabulary:
    Polynomial:
Theorems
Fundamental Theorem of Algebra
Linear Factorization Theorem:
    Lead coefficient
    Degree:
    Standard Form Polynomial
    Term:
    Number of terms:
    Intercept Form Polynomia
    Linear factors:
    Solve by factoring:
    Find the zeroes:
    "end behavior"
```


"End Behavior"

In English we could say: "up on right, up on left"
As ' x ' gets bigger (right end) ' y ' gets bigger (goes upward)
As ' x ' gets smaller (left end), ' y ' gets bigger (goes upward)

"end behavior"

$$
\text { as } x \rightarrow+\infty, y \rightarrow ? \quad \text { as } x \rightarrow-\infty, y \rightarrow ?
$$

Which of the following transformations affect end behavior? If so, how?

Left or right shift? \square
Up or down shift? \qquad

Vertical stretching? $\quad \square$
Reflection across x-axis? \qquad

$$
y=x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

Pick a very large input value: $1,000,000=10^{\wedge} 6$ then compare each term.

Compare the largest two powers.

$\left(10^{6}\right)^{5}=10^{30}$	$10^{30}=10^{24} * 10^{6}$
$\left(10^{6}\right)^{4}=10^{24}$	For $x=1,000,000 \rightarrow x^{\wedge} 6$ is $1,000,000$ times larger than $x^{\wedge} 5$
$\left(10^{6}\right)^{3}=10^{18}$	\rightarrow At the right and left ends of ther
$\left(10^{6}\right)^{2}=10^{12}$	graph (where the input value is a gigantic positive or negative number)
$\left(10^{6}=10^{6}\right.$	the largest power in the polynomial has the largest effect on the output value
$1=10^{0}$	(y-value) so this term dominates the effect on end-behavior.

Polynomial Degree \rightarrow End Behavior?

All even degree polynomials have the
All odd degree polynomials have the \qquad

Complex Conjugates Theorem

If $f(x)$ is a polynomial and if ($x+b i$) is a factor (-bi is a zero) then its complex conjugate, $(x-b i)$ is also a factor (and +bi is a zero) of $f(x)$.

$$
\begin{gathered}
\text { Example: } \quad 0=x^{2}+4 \rightarrow 0=(x-2 i)(x+2 i) \\
x=2 i, x=2 i
\end{gathered} \begin{gathered}
\text { Example: } 0=x^{4}+5 x^{3}+13 x^{2}+45 x+36 \\
0=(x+4)(x+1)(x-3 i)(x+3 i) \\
x=-4, \quad-1, \quad 3 i, \quad-3 i
\end{gathered}
$$

Irrational Roots Theorem

If $\mathrm{f}(\mathrm{x})$ is a polynomial and if $(x-\sqrt{b})$ is a factor of the polynomial $(\rightarrow \sqrt{b}$ is a zero) then its irrational conjugate $(x+\sqrt{b})$ is also a factor of the polynomial $(\rightarrow \sqrt{b}$ is also a zero).

$$
\text { Example: } \begin{array}{r}
0=x^{2}-3 \rightarrow 0=(x-\sqrt{3})(x+\sqrt{3}) \\
x=\sqrt{3}, \quad-\sqrt{3}
\end{array}
$$

Example: $0=x^{4}-x^{2}-20$

$$
\begin{gathered}
\rightarrow 0=(x+2 i)(x-2 i)(x-\sqrt{5})(x+\sqrt{5}) \\
x=-2 i, \quad 2 i, \quad \sqrt{5}, \quad-\sqrt{5}
\end{gathered}
$$

Describe the (1) end behavior Positive, even degree Up on left/right
(2) number of real zeroes and/or imaginary zeroes
Degree Real zeroes Imaginary Zeroes 4 0 4 1 3 2 2 3 1

Does an even degree polynomial necessarily cross the x-axis?

$$
\begin{array}{|l}
\hline \text { All zeroes can be for } \\
\text { even-degree polynomials. }
\end{array}
$$

Does an odd degree polynomial necessarily cross the x-axis?

Describe the $\quad f(x)=-8 x^{2}+14 x+8$
(1) end behavior

(2) number of real zeroes and/or imaginary zeroes

Make a table of the possible zeroes by category

Degree	Real zeroes	Imaginary Zeroes

Since "multiplicities" are counted separately, it's easier to just count the number of zeroes without specifying them as multiplicities. $f(x)=4 x^{3}+14 x+8$

Degree	Real zeroes	Imaginary Zeroes
		Not possible
		Not possible

