









"end behavior"
as $x \to +\infty$, $y \to ?$ as $x \to -\infty$, $y \to ?$
Which of the following transformations affect end behavior? If so, how?
Left or right shift?
Up or down shift?
Vertical stretching?
Reflection across x-axis?

Complex Conjugates TheoremIf f(x) is a polynomial and if (x + bi) is a factor (-bi is a zero)then its complex conjugate, (x - bi) is also a factor (and +bi is a zero) of f(x).Example: $0 = x^2 + 4 \rightarrow 0 = (x - 2i)(x + 2i)$
x = 2i, x = 2iExample: $0 = x^2 + 4 \rightarrow 0 = (x - 2i)(x + 2i)$
x = 2i, x = 2iExample: $0 = x^4 + 5x^3 + 13x^2 + 45x + 36$
0 = (x + 4)(x + 1)(x - 3i)(x + 3i)
x = -4, -1, 3i, -3i

Irrational Roots Theorem
If f(x) is a polynomial and if
$$(x - \sqrt{b})$$
 is a factor of the
polynomial $(\rightarrow \sqrt{b} \text{ is a zero})$ then its irrational conjugate $(x + \sqrt{b})$
is also a factor of the polynomial $(\rightarrow \sqrt{b} \text{ is also a zero})$.
Example: $0 = x^2 - 3 \rightarrow 0 = (x - \sqrt{3})(x + \sqrt{3})$
 $x = \sqrt{3}, -\sqrt{3}$
Example: $0 = x^4 - x^2 - 20$
 $\rightarrow 0 = (x + 2i)(x - 2i)(x - \sqrt{5})(x + \sqrt{5})$
 $x = -2i, 2i, \sqrt{5}, -\sqrt{5}$

Does an even degree polynomial necessarily cross the x-axis?						
4 	All zeroes can befor even-degree polynomials.					
Does an <u>odd</u> degr	ree polynomial necessarily cross the x-axis?					
	Since the end-behavior is down left/ up right,					
▲ <u>····································</u>	so it has					

Describe the (1) end behavior $ \begin{array}{l} f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8 \\ \text{Positive, even degree} & \text{Up on left/right} \\ \text{(2) number of real zeroes and/or imaginary zeroes} \end{array} $								
	Degree	Real zeroes	Imaginary Zeroes					
	4	0	4					
		1	3	Not possible				
		2	2					
		3	1	Not possible	-			
		4	0					

Describe the (1) end behav		$-8x^2 + 14x + 8$	_			
(2) number of real zeroes and/or imaginary zeroes						
Make a table of the possible zeroes by category						
Degree	Real zeroes	Imaginary Zeroes				

Since "multiplicities" are counted separately, it's easier to just count the number of zeroes without specifying them as multiplicities. $f(x) = 4x^3 + 14x + 8$

Degree	Real zeroes	Imaginary Zeroes	
		Not possible	Why not?
		Not possible	