

Find the X-intercepts from the Vertex Form Equations	
$y = (x - 5)^2$	$y = -2(x-3)^2 + 4$
$(1 + 2)^2 + 5$	
y = -(x+2)	+ 3

What have we learned?

1. The quadratic formula can give us x-intercepts (only if you have the *standard form equation*).

Lots of numbers and calculations. Easy to make a mistake.

2. If you "isolate the square, undo the square" on the <u>vertex form</u> <u>equation</u>, you can also find x-intercepts.

You have to know how to simplify square roots.

 $y = (x - 2)^2 - 12$ $x = 2 \pm \sqrt{4 * 3}$ $0 = (x - 2)^2 - 12$ $x = 2 \pm \sqrt{4\sqrt{3}}$ $12 = (x - 2)^2$ $x = 2 \pm \sqrt{4\sqrt{3}}$ $x = 2 \pm \sqrt{12}$ $x = 2 \pm 2\sqrt{3}$

3. You can convert standard form quadratic equations into
intercept form quadratic equations by: factoring

$$y = 2x^2 + 16x + 24$$
 $\rightarrow y = 2(x + 6)(x + 2)$
4. You can convert intercept form quadratic equations into
vertex form quadratic equations by:
a) Finding the x-coordinate of the vertex (half way between
x-intercepts) $x = -6, -2$ Vertex: $(-4, _]$
b) Substituting the x-value into the equation to find the
y-coordinate of the vertex. $y = 2(-4 + 6)(-4 + 2)$
 $y = 2(2)(-2) = -8$ Vertex: $(-4, -8)$
c) Using the VSF and the vertex to write the vertex form
equation.
VSF = 2, Vertex: $(-4, -8)$ $y = 2(x + 4)^2 - 8$

What is the vertex form equation?	
$y = 2x^{2} + 16x + 24$ $a = 2$ $b = 16$ Vertex: $(-4, f(-4))$ $x-coord. of vertex = \frac{-b}{2a}$ $\frac{-b}{2a} = \frac{-16}{2(2)} = -4$ What is the v-coordinate of the vertex?	
$f(A) = 2(A)^{2} + 16(A) + 24$	
$\int (-4) - 2(-4) + 10(-4) + 24$	
f(-4) = -8 Vertex: (-4, -8)	
What is the Vertex form equation?	
VSF = 2, vertex = $(-4, -8)$ $y = 2(x + 4)^2 - 8$	

