

$(x+2)(x+3)$ multiply	
x^{2}	
$(x+2)(x+3)$ "right times right is the right term"	
$x^{2}+6$	
$(x+2)(x+3) \quad$ "inner"	
$x^{2}+2 x+6$	
$(x+2)(x+3) \quad$ "outer"	
${ }^{2}+2 x+3 x$	$=x^{2}+(2+3) x+2$

$$
\left\lvert\, \begin{aligned}
(x+4)(x+5) \quad & =x^{2}+\left(_\quad\right) x+\left(_\right) \\
& =-\ldots \\
(x-6)(x+1)= & x^{2}+(\square+(\square) \\
& =
\end{aligned}\right.
$$

$$
\begin{aligned}
& (x+\ldots)(x+\ldots) \quad \text { Right times right is right } \\
& (x+\ldots)(x+\ldots) \quad \text { Right plus right is middle } \\
& (x+2)(x+3) \quad \begin{array}{c}
\text { What are the factors of } 6 \\
\text { that add up to } 5 ?
\end{array}
\end{aligned}
$$

Try the following:

$$
x^{2}+8 x+15=(x+3)(x+5)
$$

$$
(x+\ldots)(x+\ldots) \quad \text { Right times right is right }
$$

$$
\begin{gathered}
(3)(5)=15 \quad \text { What are the factors of } 15 \\
\text { that add up to } 8 ?
\end{gathered}
$$

$$
3+5=8
$$

Try the following:

$$
\left.\begin{array}{l}
\begin{array}{c}
x^{2}-3 x-4 \quad=(x-4)(x+1) \\
\left(x+_\right)\left(x+_\right)
\end{array} \begin{array}{l}
\text { Right times right is right }
\end{array} \\
\left(x+_\right)\left(x+_\right)
\end{array} \begin{array}{l}
\text { Right plus right is middle }
\end{array}\right] \begin{aligned}
& \text { What are the factors of }-4 \\
& \text { that add up to }-3 ?
\end{aligned}
$$

$$
(x+\underset{\sim}{\square})(x+\ldots \text { Right plus right is middle }
$$

Try the following:

$$
\begin{aligned}
& x^{2}+10 x+21 \\
& x^{2}-6 x-16 \\
& x^{2}-9 x+18
\end{aligned}
$$

Your turn:

$$
6 x^{2}+24 x+18
$$

Always factor out the common factor $1^{\text {st }}$.

Now factor the trinomial.
$x^{2}-1 \quad$ "the difference of two squares"
Two numbers multiplied $=(-1)$
Vocabulary
Conjugate pair (of binomials)
two binomials whose terms are exactly the same and added $=0$ except $+/$ - for one pair of terms

$$
\begin{aligned}
& (x-1)(x+1) \\
& (-x+1)(x+1)
\end{aligned}
$$

