## Math-3A

Lesson 13-1 Arithmetic Sequences and Linear Functions What is a sequence?Sequence:an ordered progression of numbers (a list of<br/>numbers that follows a pattern)Finite sequence:a sequence that has a final term, therefore the<br/>total terms in the sequence can be counted.example5, 10, 15, 20, 25, 30, 355, 10, 15, ..., 35number pattern continues<br/>between 15 and 35Infinite sequence:sequence that does not have a final term,<br/>so the number of terms is uncountable.Example:2, 5, 8, ... number pattern continues after '8' infinitely

What are the six ways to show a relation between input and output?

example 5, 10, 15, 20, 25, 30, 35

"The 1<sup>st</sup> term is 5, the 2<sup>nd</sup> term is 10, the 3<sup>rd</sup> term is 20 etc.)

What are the input values?

How is a <u>sequence</u> a <u>relation</u> between <u>input</u> and <u>output</u>?

<u>The domain of a sequence</u> is almost always the "natural numbers" (until you get to Pre-Calculus)

 $a_k$ The input value refers to the relative position of the k term in the sequence (1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, etc.) 1 -9 2 -6 The range is the sequence itself (the set of all the 3 -3 individual numbers of the sequence). 4 0 5 3 6 6 7 9 8 12 9 15









$$a_k$$
 =  $2k+3:k=1,2,3,...$  Defines a "rule" so that you can find the "kth" term  
We call this method of defining the sequence "set-builder"

We call this method of defining the sequence "set-builder" notation.

Spoken: "the sequence 'a' is defined as 2k +3 with 'k' taking on the values 1, 2, 3, and so forth"

Your turn: make a table of values that contains the input/output pairs for the first 6 numbers of sequence 'a'.  $\{a_k\}$  =  $\{2k+3: k=1,2,3,...\}$ 2 3 5 6 4 k 1 5 13 15  $a_k$ 7 9 11  $a_1 = 2(1) + 3 = 5$  $a_2 = 2(2) + 3 = 7$ 

v = mx + bYour turn: Write a linear equation that contains the ordered pairs in the table below.  $m = \frac{\Delta y}{\Delta x} = 2$  y = 2x + bSlope= Δx How do you find 'b'?  $\Delta x = 1$ Method #1: plug in an 2 3 1 k input—output pair. . . . 5 9  $a_k$ 7 ... (5) = 2(1) + b3 = b $\Delta v = 2$ y = 2x + 3



$$\frac{Your turn}{2}$$
 1. Fill in the table.  
2. Write a linear equation that contains the ordered pairs in the table below.  

$$\begin{bmatrix} b_m \end{bmatrix} = \begin{bmatrix} 2(m-1) + 5 : m = 1, 2, 3, ... \end{bmatrix}$$

$$y = mx + b \qquad y = 2x + b \qquad y = 2x + b \qquad y = 2x + 3$$

$$Ax = 1$$

$$\boxed{k \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}$$

$$\boxed{a_k \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15}}$$

$$\Delta y = 2$$

$$slope = \frac{\Delta y}{\Delta x} = 2 \qquad y-intercept = (0, b)$$

$$y-intercept = (0, 3)$$

Whoa, they're the same sequence!!!  

$$-\{a_k\} = -\{2k+3: k = 1,2,3,...\}$$

$$-\{b_m\} = \{2(m-1)+5: m = 1,2,3,...\}$$

$$\boxed{k \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}$$

$$\boxed{a_k \ 5 \ 7 \ 9 \ 11 \ 13 \ 15}$$

$$\boxed{b_m \ 5 \ 7 \ 9 \ 11 \ 13 \ 15}$$

$$\underbrace{Is \ this \ true?}_{2x-2+5=2x+3} \qquad yes$$

$$2x+3=2x+3$$

Whoa, they're the same sequence!!!  

$$-\left\{a_{k}\right\} = -\left\{2k + (3): k = 1, 2, 3, ...\right\} \quad \underline{\text{Emphasizes "0th" term}} \\
-\left\{b_{m}\right\} = \left\{2(m-1) + (5) m = 1, 2, 3, ...\right\} \quad \underline{\text{Emphasizes 1st term}} \\
\frac{x \quad (0 \quad (1) \quad (1) \quad (1) \quad (2) \quad (2)$$



<u>Arithmetic Sequence</u>: each pair of adjacent terms has the same "<u>common difference</u>"

Note: the "<u>common difference</u>" becomes the <u>slope</u> of the linear equation passing through each ordered pair because the 1<sup>st</sup> difference of the input is always '1'.



| n | $a_n$ | Your turn: Define the following sequence of                   |
|---|-------|---------------------------------------------------------------|
| 1 | -9    | numbers using "set builder" notation.                         |
| 2 | -6    | 3                                                             |
| 3 | -3    | -963. 0. 3. 6. 9. 12. 15                                      |
| 4 | 0     | -, -, -, -, -, -, -, -, -                                     |
| 5 | 3     | $a = \{3n - 12 \cdot \text{for } n = 1, 2, 3, 9\}$            |
| 6 | 6     | $u_n$ (or 12.101 if 1,2,0,,9)                                 |
| 7 | 9     | $a = \{3(n-1) = 9 \cdot \text{for } n = 1, 2, 3, 9\}$         |
| 8 | 12    | $a_n = \{5(n-1) \mid 5: 101 \text{ II} = 1, 2, 5, \dots, 5\}$ |
| 9 | 15    |                                                               |
|   |       |                                                               |
|   |       |                                                               |
|   |       |                                                               |
|   |       |                                                               |

| Examples Sequences                                                                                      |            |     |     |     |     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------|-----|-----|-----|-----|--|--|--|--|
| <u>Running total</u> : if your car payment is \$200/month, a<br><u>running total</u> would look like:   |            |     |     |     |     |  |  |  |  |
|                                                                                                         | Month      | 1   | 2   | 3   | 4   |  |  |  |  |
|                                                                                                         | Total (\$) | 200 | 400 | 600 | 800 |  |  |  |  |
| Your Turn:<br>1. Is this an arithmetic sequence?<br>2. Define this sequence explicitly and name it "C". |            |     |     |     |     |  |  |  |  |
| $C_m = 200(m-1) + 200$ (m = 1,2,3,4)<br>$C_m = 200m$                                                    |            |     |     |     |     |  |  |  |  |

Recursively Defined Sequence: a sequence defined by the first term, and how to find the "next term."  $b_1 = 4$  $b_n = b_{n-1} + 2$ For all n > 1 1 *★* "next" term = 1<sup>st</sup> term 'n' acts as a "previous" term + 2 counter for the sequence since From this information, could you write the 1st 1<sup>st</sup> term is already four terms of the sequence? defined. 4, 6, 8, 10 From the recursive definition, could you write the explicit definition (formula) of the sequence?  $a_k = (d(k-1) + (a_0))$ common difference first term of the sequence  $b_n = 2(n-1) + 4$ 

Recursively Defined Sequences $b_1 = 4$  $b_n = b_{n-1} + 2$ For all n > 1Your turn: Find the 3<sup>rd</sup>term of the sequence.To find the 3<sup>rd</sup> term, we need to find out what the 2<sup>nd</sup> term is: $b_2 = b_1 + 2$  $b_2 = 4 + 2 = 6$  $b_3 = 6 + 2 = 8$ 4, 6, 8, 10, 12,...Is this an arithmetic sequence?YesWhat is the common difference?2What is explicit formula for the sequence? $a_k = d(k-1) + a_0$  $a_k = 2(k-1) + 4$ 

<u>Two ways</u> to write a formula to <u>define</u> the numbers in <u>a</u> <u>sequence</u>.

Explicitly Defined Sequence

Recursively Defined Sequence

Define the following sequence of numbers recursively. -9, -6, -3, 0, 3, 6, 9, 12, 15  $b_1 = -9$   $b_n = b_{n-1} + 3$  For  $1 < n \le 9$ Define the sequence explicitly:  $b_n = d(k-1) + b_0$  $b_n = 3(k-1) - 9$  Define the following sequence of numbers <u>recursively</u>. -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20  $b_1 = \begin{array}{r} \hline -20 \\ b_n = b_n + \begin{array}{r} \hline 4 \\ \end{array} \quad \text{For } 1 < n \le 11$ If the sequence was an infinite sequence, what would be the 27<sup>th</sup> term? Define the sequence <u>explicitly</u>:  $b_n = \begin{array}{r} \hline d \\ k - 1 \\ k - 1 \\ -20 \\ b_{27} = 4(27 - 1) - 20 \\ b_{27} = 84 \end{array}$