SM3-A Lesson 13-13 The "Box Problem"

"The whole is greater than the sum of its parts." Aristotle

This is a good definition for synergism.
It doesn't make sense for math.
The length of a line segment is the sum of the its parts.

$$
L=a+b+c
$$

Rewrite the relation between the total length of the segment and its parts.

Dimensions " $\underline{\text { " }}$ and " \underline{b} " on the net correspond to which dimensions on the box?

Write an expression for length ' z ' (the length of the box) as a function of the original cardboard width " W " and your chosen height of the box ' x '

Corners are cut out of a" x 21 " piece of cardboard.
Then the sides are folded up along the dotted lines.

Graph your equation for the volume of the box.
$V=x(9-2 x)(21-2 x) \quad V=L^{*} w^{*} h$

Why does the "implied domain" make sense now that you can see the graph of volume as a function of height?

What is the maximum volume of the box?
What height corresponds to the maximum volume of the box?

