Math-3A

12-1

Modeling Density and
Rewriting formulas for the variable of interest

The total mass of steel used in the construction of a car is 1800 lbm .

The density of steel is 490 pounds (mass) per cubic foot.

What is the volume of steel in a car?

$$
\begin{aligned}
\text { density } & =\frac{\text { mass }}{\text { vol }} & \frac{1800 \mathrm{lbm} * \mathrm{ft}^{3}}{490 \mathrm{lbm}}=\text { vol } \\
\frac{490 \mathrm{lbm}}{\mathrm{ft}^{3}} & =\frac{1800 \mathrm{lbm}}{\text { vol }} & \text { vol }=3.67 \mathrm{ft}^{3} \\
\frac{\mathrm{ft}^{3}}{490 \mathrm{lbm}} & =\frac{\text { vol }}{1800 \mathrm{lbm}} &
\end{aligned}
$$

What does "surface area" mean?

Surface area: The area of the surface of the shape.

Why would this information be important?

Helps you to know how much material you need to build, paint, or cover the item.

Formula: an equation that shows the relationship between two or more quantities.

Examples of formulas you've seen are:

$$
\begin{aligned}
& A_{\text {cylinder }}=2\left(\pi \mathrm{r}^{2}\right)+2 \pi r h \\
& V=L^{*} w^{*} h \\
& \quad A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

volume $_{\text {prism }}=($ area of base $) * h$
volume $_{\text {rectangular pyramid }}=\frac{1}{3}($ base area $) h$
\rightarrow volume $_{\text {cylinder }}=($ area base $) * h$

volume $_{\text {cone }}=\frac{1}{3}($ area base $) * h$

surf. area $_{\text {sphere }}=4 \pi \mathrm{r}^{2}$
volume $_{\text {sphere }}=\frac{1}{3} * 4 \pi \mathrm{r}^{3}$

What does " $\mathrm{f}(\mathrm{x})$ " mean?
 Rule name
 ```\nearrow ~ \ ~ I n p u t ~ v a r i a b l e ~```

It means that there is a rule, named " f " whose output is a result of "doing math" on the input to the variable ' x '.

Example: $\quad f(x)=2 x+3$
' x ' is a place-holder in the rule where we substitute in the input value.

Rewriting formulas

We say that one quantity is a function of one or more other quantities.

$$
\begin{aligned}
& A=\pi r^{2} \quad A=f(r) \\
& A=L^{*} w \quad A=f(L, w) \\
& A_{\text {cylinder }}=2\left(\pi r^{2}\right)+2 \pi r h \quad A=f(r, h) \\
& C=2 \pi r \quad C=f(r)
\end{aligned}
$$

Fill in the blank for each function: \qquad $"$ is a function of \qquad " "

$$
\begin{aligned}
& g(n)=2 n+3 \quad \text { " } \mathrm{q} \text { is a function of } \underline{\mathrm{n}} \\
& A(t)=10 e^{-0.02 t} \quad \text { " } \underline{\mathrm{A}} \text { is a function of } \underline{\mathrm{t}} \text { " } \\
& k(x)=\sqrt{25-x^{2}} \quad \text { " } \underline{\mathrm{k}} \text { is a function of } \underline{\mathrm{x}} \\
& h(t)=-16 t^{2}+100 t+5 \text { " } \underline{\mathrm{h}} \text { is a function of } \underline{\mathrm{t}} \text { " } \\
& (x-4)^{2}+(y+2)^{2}=25 \quad \text { neither } \\
& y=-2 \pm \sqrt{25-(x-4)^{2}} \quad \text { " } \underline{x} \text { is a function of } \underline{\mathrm{x}} \text { " } \\
& x=4 \pm \sqrt{25-(y+2)^{2}} \quad \text { " } \underline{\mathrm{x}} \text { is a function of } \mathrm{y} \text { " }
\end{aligned}
$$

Rewrite the formula so that it is.....

$$
\begin{array}{ccc}
C=2 \pi r & r=f(C) & r=C / 2 \pi \\
A=\pi r^{2} & r=f(A) & r=\sqrt{A / \pi} \\
A=L * w & L=f(A, w) & L=A / w \\
A_{c y l i n d e r}=2\left(\pi \mathrm{r}^{2}\right)+2 \pi r h & h=f(A, r) \\
h=\frac{A-2 \pi r^{2}}{2 \pi r}
\end{array}
$$

$$
C=\frac{5}{9}(F-32) \quad C=f(F)
$$

Rewrite the formula so that it is in the form: $F=f(C)$

$$
\begin{gathered}
\left(\frac{9}{5}\right) C=\left(\frac{9}{5}\right) \frac{5}{9}(F-32) \\
\frac{9}{5} C=F-32 \\
F=\frac{9}{5} C+32
\end{gathered}
$$

Describe the transformation of the parent function:
$y=-3(x+4)^{2}-5$
Reflected across x-axis, VSF $=3$, left 4, down 5
Solve the equation for ' x '.
$y=-3(x+4)^{2}-5$
$\pm \sqrt{\frac{-y-5}{3}}=x+4$
$y+5=-3(x+4)^{2}$
$x=-4 \pm \sqrt{\frac{-y-5}{3}}$
$\frac{y+5}{-3}=(x+4)^{2}$
R : $-y-5 \geq 0$
$\frac{-y-5}{3}=(x+4)^{2}$
$R:-5 \geq y$
$R: \mathrm{y} \leq-5$

Solve the equation for ' x '

$$
\begin{array}{lr}
y=5(x-1)^{2}+3 & x=1 \pm \sqrt{\frac{y-3}{3}} \\
y-3=5(x-1)^{2} & R: y-3 \geq 0 \\
\frac{y-3}{5}=(x-1)^{2} & R: y \geq 3 \\
\pm \sqrt{\frac{y-3}{5}}=x-1 &
\end{array}
$$

Solve the equation for ' x '

$$
y=6 \log (x+2)-4
$$

$$
y+4=6 \log (x+2)
$$

$$
\frac{y+4}{6}=\log (x+2)
$$

$$
10^{\left(\frac{y+4}{6}\right)}=x+2
$$

$$
x=-2+10^{\left(\frac{y+4}{6}\right)}
$$

$$
A=h^{*} \frac{\left(b_{1}+b_{2}\right)}{2} \quad A=f\left(h, \mathrm{~b}_{1}, b_{2}\right)
$$

Rewrite the formula as: $b_{1}=f\left(\mathrm{~A}, h, \mathrm{~b}_{2}\right)$

$$
\begin{array}{ll}
2 A=h\left(b_{1}+b_{2}\right) & 2 A=h b_{1}+h b_{2} \\
\frac{2 A}{h}=b_{1}+b_{2} & 2 A-h b_{2}=h b_{1} \\
b_{1}=\frac{2 A}{h}-b_{2} & b_{1}=\frac{2 A-h b_{2}}{h}
\end{array}
$$

$$
b_{2}
$$

Are the two formulas are equivalent?

Solve a totally non-recognizable quadratic equation by graphing.
$20=(x+3)(x-2)$

Finding the dimensions of a rectangle.

The length of one side of a rectangle is three more than two times a number. What is the expression for the length of the side?

The width of the rectangle is two less than the number. What is the expression for the length of the side?

If the area of the rectangle is 400 square inches, what is the length and width of the rectangle?

$400=(2 x+3)(x-2)$	Solve by graphing \rightarrow system of equations.
$y=400$	Do both values of ' x ' give you an area that is a positive number?
$y=(2 x+3)(x-2)$	
$w=x-2$	$L=2 x+3$
$w=14.5-2 \quad L=2(14.5)+3$	
$w=12.5 \quad L=32$	

