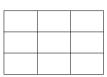
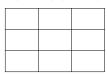
SM3-A Lesson 11-9 (Review Quadratics)

Multiplying Binomials $(x-3)(x+4)$	$x^2 + x - 12$
------------------------------------	----------------

The "Box Method"


	х	4
х	X ²	4x
-3	-3x	-12


Standard Form Quadratic Expression

$$(x-1)(x+5)$$

$$(x + 2)(x + 6)$$

$$(x-4)(x+4)$$

$$x^2 - 3x - 4 = (x - 4)(x + 1)$$

(x+2)(x+3)

(x+2)(x+3)

(x+2)(x+3)

(x+2)(x+3)

multiply

"inner"

"outer"

"left times left is the left term"

"right times right is the right term"

$$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}})$$
 Right times right is right

$$(x+)(x+)$$
 Right plus right is middle

$$(-4)(1)=-4$$
 What are the factors of -4 that add up to -3?
$$(-4)+(1)=-3$$

$$(x^2) + 5x + (6)$$

Left times left is left

$$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}})$$
 Right times right is right

$$(x + \underline{)}(x + \underline{)}$$
 Right plus right is middle

$$(x+2)(x+3)$$
 What are the factors of 6 that add up to 5?

Try the following:

$$x^2 + 8x + 15 = (x+3)(x+5)$$

$$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}})$$
 Right times right is right

$$(x+)(x+)$$
 Right plus right is middle

$$(3)(5) = 15$$

What are the factors of 15 that add up to 8?

$$3 + 5 = 8$$

Factor

$$x^2 + 10x + 21$$

$$x^2 - 6x - 16$$

$$x^2 - 9x + 18$$

$$2x^2 + 4x + 2$$

$$6x^2 + 24x + 18$$

Conjugate pair (of binomials)

two binomials whose terms are exactly the same <u>except</u> +/- for one pair of terms

$$(x-1)(x+1)$$
 x^2-1 "the difference of two squares"

$$x^2 - 9$$
 $(x - 3)(x + 3)$

$$4x^2 - 9$$
 $(2x - 3)(2x + 3)$

$$16x^2 - 25$$
 $(4x - 5)(4x + 5)$

$$36x^4 - 49x^2 (6x^2 - 7x)(6x^2 + 7x)$$

2*15 = 30 $2x^{2} + 13x + 15$ 10 + 3 = 13

$$30 = 10 * 3$$

Are there any <u>other</u> factors of 30 that add up to 13?

This tells us to break 13x into 10x + 3x

$$2x^2 + 13x + 15$$
$$2x^2 + 10x + 3x + 15$$

These are all of the terms in "the box"

	Х	5
2x	$2x^2$	10x
3	3x	15

$$2x^2 + 13x + 15$$

 $\rightarrow (2x + 3)(x + 5)$

Factor

5*4=

 $5x^2 + 12x + 4$

+__= 12

11*(-9) = _

 $11x^2 + 2x - 9$

Factor

9*10 =

 $9x^2 - 13x - 10$

+ = -13

12*5 =

 $12x^2 - 16x + 5$

Find the X-intercepts from the Vertex Form Equations

 $y = -2(x-3)^2 + 4$ Set y = 0 (y-value of an x-int. is 0)

 $0=4(x-5)^2-8 \quad \text{Add 8 (left/right)}$

 $8 = 4(x-5)^2$ Divide by 4 (left/right)

 $2 = (\underline{\hspace{1cm}})^2$ What number, squared, equals 2?

 $2 = \left(\sqrt{2}\right)^2 \quad 2 = \left(-\sqrt{2}\right)^2$

 $\underbrace{\pm \sqrt{2}} = x - 5$ Add 5 (left/right)

Find the X-intercepts from the Vertex Form Equations

$$v = (x - 5)^2$$

$$y = (x - 5)^2$$
 $y = -2(x - 3)^2 + 4$

$$y = -(x+2)^2 + 5$$

What is the vertex form equation?

$$y = 2x^2 + 16x + 24$$

x-coord. of vertex = $\frac{-b}{2a}$

$$\frac{-b}{2a} = \frac{-16}{2(2)} = -4$$

Vertex: (-4, f(-4))

What is the y-coordinate of the vertex?

$$f(-4) = 2(-4)^2 + 16(-4) + 24$$

$$f(-4) = -8$$
 Vertex: $(-4, -8)$

Vertex:
$$(-4, -8)$$

What is the Vertex form equation?

VSF = 2, vertex =
$$(-4, -8)$$
 $y = 2(x + 4)^2 - 8$

Convert the following non-factorable standard form equations into vertex form. Find the x-intercepts.

$$y = x^2 - 2x - 12$$

$$y = x^2 + 20x + 99$$

$$y = x^2 - 14x + 50$$

What is the vertex form equation?

$$y = x^2 - 6x + 13$$

x-coord. of vertex =
$$\frac{-b}{2a}$$

$$\frac{-b}{2a} = \frac{-(-6)}{2(1)} = 3$$

$$a = 1$$
 $b = -6$
Vertex: $(3, f(3))$

$$\frac{-b}{2a} = \frac{-(-6)}{2(1)} = 3$$

What is the y-coordinate of the vertex?

$$f(3) = (3)^2 - 6(3) + 13$$

$$f(3) = 4$$

Vertex: (3, 4)

What is the Vertex form equation?

$$VSF = 1$$
, $vertex = (3, 5)$

$$y = (x-3)^2 + 4$$