Math-3A Lesson 11-8 Solve Systems of Linear Equations Using

Elimination

Algebraic Methods of Solving Systems of Equations

<u>Substitution</u>: Solve one equation for one of the variables. Substitute the equivalent expression for the variable into the other equation. This results in one equation with one variable.

<u>Elimination</u>: Add the equations (or multiples of the equations) to eliminate one of the variables. Then solve the single variable equation and "back substitute" the result.

<u>Elimination Method</u>: Eliminate one of the variables by adding the equations together.

$$(x - 3y = 5)$$

-x + 5y = 3

What property allows me to add equations together? "Property of Equality"

Adding these equations will <u>eliminate</u> the 'x' variable.

Adding these equations will <u>eliminate</u> the 'y' variable.

What variable will be eliminated if I add the following equations?

1.
$$\begin{pmatrix} 2x + y = -2 \\ -2x + 3y = -8 \\ 2. & 4x - 3y \\ -2x + 3y = -8 \\ -2x + 3y = -8 \end{pmatrix}$$

$$3x + y = -1$$

3. $2x + 3y = 18$

Solve the equation using "elimination"

$$4x - 3 y = -2$$

 $-2x + 3y = -8$
 $2x = -10$
 $x = -5$
 $-2(-5) + 3y = -8$
 $10 + 3y = -8$
 $3y = -18$
 $y = -6$

<u>Least common r</u> number that is di	nultiple (of 2 numbers) is the smallest visible by those two numbers.		
2 and 4	LCM = 4		
4 and 6	LCM = 12		
4, 9	LCM = 36		
3, 5	LCM = 15		
4, 5	LCM = 20		

Г

What if the coefficients are not the same?

$$5x + 5y = -2$$

$$-2x + 3y = -8$$
What is the LCM for the coefficients of 'x'?
LCM = 10 You have to fix both!

$$2^{*}(5x - 5y) = -2^{*}2 \qquad 10x - 10y = -4$$

$$5^{*}(2x + 3y) = -8^{*}5 \qquad -10x + 15y = -40$$

$$3x - 4y = -10$$

$$6x + 3y = -42$$

(-2)3x - (-2)4y = -10(-2)

$$6x + 3y = -42$$

$$-6x + 8y = 20$$

$$6x + 3y = -42$$

$$6x - 6 = -42$$

$$11y = -22$$

$$y = -2$$

$$x = -6$$

Linear Equation in 3 Variables: Ax + By + Cz = D 3x + 2y - z = 5System of Linear Equations: 3 equations, each with the same 3 variables (3 equations in 3 unknowns) Ax + By + Cz = D Ex + Fy + Gz = HJx + Ky + Lz = M

$$\begin{array}{c} Eq\#1: (x) + 2y - 2z = -15 & Eq\#1/\#2 - 3y - z = 9 \\ Eq\#2: (2x) + y - 5z = -21 & \div 3(-6y + 3z) = (33)(\div 3) \\ Eq\#3: (x) - 4y + z = 18 & Eq\#1/\#3 - 2y + z = 11 \\ -3y - z = 9 \\ Eq\#1: -2(x + 2y - 2z) = (-15)(-2) & -5y = 20 \\ Eq\#2 & 2x + y - 5z = -21 & y = -4 \\ -2x - 4y + 4z = 30 & y = -4 \\ -2x - 4y + 4z = 30 & -3(-4) - z = 9 \\ Eq\#1/\#2 & -3y - z = 9 & 12 - z = 9 \\ Eq\#1: -1(x + 2y - 2z) = (-15)(-1) & z = 3 \\ Eq\#3: & x - 4y + z = 18 & x - 4(-4) + (3) = 18 \\ -x - 2y + 2z = 15 & x + 16 + 3 = 18 \\ Eq\#1/\#3 & -6y + 3z = 33 & x = -1 \\ \end{array}$$

You start your own company to make smartphones. You decide on 3 models; <u>basic</u>, <u>3G model</u>, and the <u>4G model</u>.

The <u>basic</u> model is for people who do not have a lot of disposable income. The <u>3G model</u> has the speed and download capability that most people want. The <u>4G model</u> has all of the "bells and whistles" and is expandable to meet future needs.

You hire and train your employees to perform all of the basic tasks; assembly, testing, and packaging of each phone.

You analyze your process and employees and decide you have 260 man-hours for assembly in a week, 170 man-hours for testing, and 120 man-hours for packaging.

The table below shows the man-hour totals required for each of the						
three tasks.		Basic Model	3G Model	4G Model		
	Assembly	1 man-hour	3 man-hours	4 man-hours		
	Testing	1 man-hour	2 man-hours	2 man-hours		
	Packaging	1 man-hour	1 man-hour	2 man-hours		
What are your three constraints?						
260 man-hours for assembly $x + 3y + 4z = 260$						
170 man-hours for testing, and $x + 2y + 2z = 170$						
<u>120 man-hours for packaging</u> . $x + y + 2z = 120$						
Write an equation for each of the constraints. Your goal is to figure out how many phones of each type you should build. Let 'x' be the number of basic phones, 'y' be the number of						
3G, and 'z	z de the hui	mper of 4G pr	iones you will	DUIIO.		