

$$6x + 2y = 3 \xrightarrow{\text{Solve by graphing}} \text{No solutions}$$

$$y = -3x + 1 \xrightarrow{\text{No solutions}} y = -3x + \frac{3}{2}$$

$$y = -3x + 1 \xrightarrow{\text{The lines were parallel.}} \text{The lines were parallel.}$$

$$x - 3y = 5 \xrightarrow{\text{Solution: (17, 4)}} \text{Solution: (-2/3, 13/3)}$$

$$y = 5x + 8 \xrightarrow{\text{Solution: (-2/3, 13/3)}} \text{Solution: (3/2, 1)}$$

Substitution Method	v = -2x + 8
1. Solve one equation for one of the variables (already done if in "y =" form). $y = 3x - 2$	
2. Substitute the value of the variable into the other equation.	() = -2x + 8 3x - 2 = -2x + 8
3. Solve for the single variable.	5x - 2 = 8 $5x = 10$
 Substitute the value of the solved-for variable into <u>either</u> <u>equation</u> to find the other varable 	+2 +2 +2 +5 +5 x = 2 e. 5. Test your solution
y = 3x - 2 $y = 3(2) - 2$	y = 4 (2, 4) in the <u>other</u> equation.
y = 3() - 2 $y = 6 - 2$	y = -2x + 8 (4) = -2(2) + 8

Solve the System of Equations Using the Substitution Method

$$y = -3$$
 (4, -3)
 $y = -6x + 21$ (2, 6)
 $y = 6x - 3$ (0, -3)
 $y = -4x - 3$ (0, -3)

Equations in Standard Fo	orm $2x + y = 8$
1. Solve both equations for the same variable. y =	-2x + 8 $y = x - 1$
 Substitute the value of the variable into the other equation. 	-2x + 8 = x - 1 +2x + 2x 8 = 3x - 1
3. Solve for the single variable.	9 = 3x x = 3
4. Substitute the value of the solved-for variable into <u>either</u> <u>equation</u> . 2x + y = 8 $6 + y = 82(3) + y = 8$ $y = 2$	÷3 ÷3 5. Test your solution (2, 4) in the <u>other equation.</u> -3(3) + 3(2) = -3 -9 + 6 = -3

How do you know how many solutions there are? (1, 0, or infinite #) $6x + 2y = 3 \qquad 6x + 2(-3x + 1) = 3 \qquad 2 = 3$ $y = -3x + 1 \qquad 6x - 6x + 2 = 3$ All the variables "disappeared" and the equation is <u>false</u>: \longrightarrow No solutions How can that be? $6x + 2y = 3 \qquad \longrightarrow \qquad y = -3x + \frac{3}{2}$ $y = -3x + 1 \qquad \text{The lines were parallel.}$ How do you know how many solutions there are? (1, 0, or infinite #) 6x + 2y = 4 6x + 2(-3x + 2) = 4 4 = 4 y = -3x + 2 6x - 6x + 4 = 4All the variables "disappeared" and the equation is <u>true</u>: \longrightarrow Infinitely many solutions How can that be? 6x + 2y = 4 \longrightarrow y = -3x + 2y = -3x + 2 Different versions of the same equation!