Math-3A
 Lesson 11-6

Solving Systems of Equations Graphically

A solution of a system of two equations in two variables is an ordered pair of real numbers that lies on both graphs (where the graphs intersect).

Depending upon the types of equations in the system, there can be more than one solution!

Methods of Solving Systems

1. Substitution: a method using algebra and properties of algebra (we learned this in Math-2)
2. Elimination: another algebraic method that we learned in Math-2.
3. Graphing: The points of intersection of the graphs are the solutions.

Graphing is extremely useful for very difficult equations!

Garden Problem: Find the dimensions of a rectangle with a perimeter of 200 m and an area of $500 \mathrm{~m}^{2}$.

$$
\begin{array}{cr}
2 x+2 y=200 & \mathrm{y} \\
x y=500 & \mathrm{x}
\end{array}
$$

Rewrite each equation
by solving for ' y '.
$y=\frac{(200-2 x)}{2} \quad y=500 / x \quad$ Solve by graphing.

How could you turn the following single variable equation into a system of equations in two variables?

$$
y=3+5 \sqrt{x-4}
$$

Solve by graphing
Convert the following single variable equations into a system of equations in two variables.

$$
\begin{aligned}
5 & =x^{2}+4 x-10 \\
& y=5 \\
& y=x^{2}+4 x-10
\end{aligned} \quad \text { Solve by graphing }
$$

Solving a single variable equation

The solution to the two equations will be ($\mathbf{x}, 4$) where ' x ' is the solution to the single variable equation.

Check: $3 \log (8.64-4)+2=3.99955$

Convert the following single variable equations into a system of equations in two variables.

$$
\begin{array}{ll}
-4=6-2 \log (3 x-7) & y=-4 \quad \text { Solve by graphing } \\
y=6-2 \log (3 x-7)
\end{array}
$$

Formula relating distance (d) that a tornado travels and the wind speed (s) inside the cone of the tornado.

$$
s=93 \log d+65
$$

The wind speed of a tornado was $251 \mathrm{mi} / \mathrm{hr}$. How far did it travel on the ground?

$$
251=93 \log d+65
$$

$$
d=100 \text { miles }
$$

$$
\begin{gathered}
7^{2 x+1}=7^{13-4 x} \quad \begin{array}{c}
\text { If you can't remember that the exponents } \\
\text { must equal each other (in this case) } \ldots \\
y=7^{2 x+1} \\
y=7^{13-4} \\
7^{2 x+1}=7^{13-4 x} \\
x=2
\end{array}
\end{gathered}
$$

Finding the equation of a circle:
What are the (x, y) coordinates of the point?
What is the radius of the circle?
$a^{2}+b^{2}=c^{2}$
$3^{2}+4^{2}=r^{2}$
$9+16=r^{2}$
$25=r^{2}$
$9+16=25$

Graphical Transformations

Parent Function: The simplest function in a family of functions (lines, parabolas, cubic functions, etc.)

Compare the two parabolas.

Subtract 2 from both sides yields: $y-2=x^{2}$

$$
(y-2)=x^{2}
$$

Replace " y " in the parent function with $(y-2)$ moves the graph up 2.

Let's move the circle 2 spaces to the right.
How do we change the equation to translate the graph right 2?
$x^{2}+y^{2}=r^{2}$

Let's move the circle 2 spaces downward.

How do we change the equation to translate the graph down 2?
$x^{2}+y^{2}=r^{2}$

Prove that a point is on a circle:

The circle below is the graph of: $(x-1)^{2}+(y-2)^{2}=4$ Is the point $(2,2+\sqrt{3})$ on the circle?
Plug in $x=2$, solve for ' y '.
$(2-1)^{2}+(y-2)^{2}=4$
$(1)^{2}+(y-2)^{2}=4$
$(y-2)^{2}=3$
$y=2 \pm \sqrt{3}$
Yes $(2,2+\sqrt{3})$ is on the circle.

Solve the system:

$$
\begin{aligned}
& y=2 x-3 \\
& y=x^{2}-4
\end{aligned}
$$

gricuilate

1 :Nalue $\frac{2}{3}$ zerrimum 3 : minimum

4. ninaximum
s
sintersect
int

