

Measure of spread

Range: the difference between the greatest and least data point.

	105 100						7
Range $=$	100 100	Range $=$	${ }_{91}^{91}$	Range	88	Range	107 107 107
(105-35)	95	(91-45)	86 86		79	= 93	107
$=70$	90	- 46	${ }_{86}^{86}$	$=77$	68	$=93$	93
	85 80	$=46$	82		60 55		${ }_{93}^{93}$
	80 75 85		82 82		48		${ }_{93}$
	75 75 78		77		44		${ }^{93}$
	75 75 75		77 73		${ }_{33}$		${ }_{93}$
	75		68		25		93
	75 70		68		$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$		86 86
	65 55 5		${ }_{64}^{64}$		21		79
	50		50 45		13 13		64 57
	50 50				13		57
	45				13 11		43 36
	35						14

Box and Whisker Plot: a graphical representation of Min data point, Q1, median, Q3, max data point.

Linear scale!!!!
$x_{\max }=10$

$\begin{array}{lllllllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 105\end{array}$

$x_{\text {min }}=35$

Q1: The median of the bottom $1 / 2$ of the data Q3: The median of the top $1 / 2$ of the data
Inter-quartile Range: Q3-Q1

Bell curve: general shape of a frequency distribution curve that is "normally distributed" (when you have a lot of data).

Build a frequency distribution graph for the following test data.

Build a frequency distribution graph for the following test data.	95 95 95 95 93 93 93 85 85 85 78 78 78 78 78 78 60 59 59 59 59 55 55 55

Standard deviation a number that describes the spread of the data.
Standard deviation 68% of the data will be within one standard deviation of the mean.
probability of a data point being within two standard deviations of the mean.
$=13.5+13.5+34+34=95 \%$
probability of a data point being within three standard deviations of the mean.

$=68+27+4.7=99.7 \%$

Same Std. Dev., different means

Outlier: a data point that is much higher or lower than the other data points.

To build the Normal Distribution Graph, we start off with the standard scale. The x-axis scale is labeled with \#'s of standard deviations from the mean.

Notice: the scale only goes from -3 to +3 SDEV from the mean.

The portion of the data that falls within each region is labeled.

Only 0.15% of the data is greater than 3 sdev above the mean.
68% of the data falls between -1 sdev and +1 sdev of the mean.

The standard deviation for some data is 7 . The mean for this data is 42. Draw a bell curve and label the x-axis up to 3 standard deviations above and below the mean.

What is the probability that a data point will be in the range between 28 and 42 ?

What is the probability that a data point will be in the range between 21 and 28 ?

To convert the standard scale of the Normal Distribution Graph to the data scale, we need (1) mean and (2) std. deviation. For example: $\quad \bar{x}=150 \quad S=10$

68% of the data falls between $-1 \quad 68 \%$ of the data falls between sdev and +1 sdev of the mean. data values 140 and 160..

Comparing "apples to apples"

In math, Jordan scored a 53. The class average was 57. The standard deviation was 2 . How many standard deviations below the mean did Jordan score?

In science, Jordan scored a 114. The class average was 126. The standard deviation was 6 . How many standard deviations below the mean did Jordan score?

On which test did Jordan perform better on?

