Math-3A
Lesson 11-11
Find Zeroes Using "Long Division", Synthetic Division, and Box Division

Our goal is to find the x-intercepts of polynomials.

We've learned how to factor:

1) Quadratic form $\quad y=x^{4}+4 x^{2}+3$
2) $3^{\text {rd }}$ degree polynomials with a common factor of ' x '

$$
y=x^{3}+4 x^{2}+3 x
$$

3) $3^{\text {rd }}$ degree polynomials that have a "nice pattern"

$$
y=x^{3}+2 x^{2}+3 x+6
$$

4) Sum and Difference of 2 "perfect cubes"

$$
y=x^{3}+8 \quad y=x^{3}-27
$$

Now we learn how to factor Polynomials that don't have a "nice pattern".

$$
\begin{aligned}
& \text { Polynomial Long Division } \\
& \text { (x-1 } \begin{array}{l}
\left.x^{2}\right) \\
\left(x^{3}\right)+3 x^{2}+14 x-18
\end{array}
\end{aligned}
$$

1) Look at left-most numbers
2) What \# times "left" = "left"?

$$
x^{3} / x=?=x^{2}
$$

3) Multiply

$$
x^{2}(x-1)=x^{3}-x^{2}
$$

4) Subtract

$$
-\left(x^{3}-x^{2}\right)
$$

Polynomial Long Division
(x-1 $\begin{aligned} & \frac{x^{2}+4 x}{x^{3}+3 x^{2}+14 x-18} \\ & \frac{-\left(x^{3}+x^{2}\right)}{4 x^{2}+14 x-18} \\ & \frac{-\left(4 x^{2}-4 x\right)}{18 x}\end{aligned}$
6) Repeat steps 1-5.

1) Look at leftmost numbers
2) What \# times "left" = "left"? $\frac{4 x^{2}}{x}=?=4 x$

$$
4 x(x-1)=4 x^{2}-4 x
$$

4) Subtract

$$
-\left(4 x^{2}-4 x\right)
$$

Polynomial Long Division
(x) $- 1 \longdiv { x ^ { 2 } + 4 x + 1 8 }$
6) Repeat steps 1-5. $-\left(x^{3}+x^{2}\right)$
$4 x^{2}+14 x-18$

1) Look at leftmost numbers
2) What \# times "left" $=$ "left"? $\frac{18 x}{x}=18$
3) Multiply
$18(x-1)=18 x-18$ 4) Subtract
$-(18 x-18)$

$$
\begin{gathered}
x-1 \begin{array}{c}
x^{2}+4 x-18 \\
\frac{x^{3}+3 x^{2}+14 x-18}{}\left(x^{3}+x^{2}\right) \\
4 x^{2}+14 x-18 \\
\frac{-\left(4 x^{2}-4 x\right)}{18 x-18} \\
\frac{-(-18 x+18)}{0}
\end{array} \\
x^{3}+3 x^{2}+14 x-18=(x-1)\left(x^{2}+4 x-18\right)
\end{gathered}
$$

How do we find the zeroes of the unfactorable quadratic factor? Convert to vertex form and take square roots.

Synthetic Division

$1^{\text {st }}$ step: Write the polynomial with only its coefficients.
$2^{\text {nd }}$ step: Write the "zero" of the linear divisor.
3rd step: Bring down the lead coefficient

$$
x - 8 \longdiv { x ^ { 3 } + 2 k ^ { 2 } - 9 0 x + 7 6 }
$$

Problem \#3 from homework

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$4^{\text {th }}$ step: Multiply the "zero" by the lead coefficient.
5th step: Write the product under the next term to the right.
$6^{\text {th }}$ step: add the second column downward

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$7^{\text {th }}$ step: Multiply the "zero" by the second number 8th step: Write the product under the next term to the right. ${ }^{\text {th }}$ step: add the next column downward

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$10^{\text {th }}$ step: Multiply the "zero" by the 3rd number 11th step: Write the product under the next term to the right $12^{\text {th }}$ step: add the next column downward

$$
x - 3 \longdiv { 1 0 x ^ { 3 } - 3 5 x ^ { 2 } + 1 7 x - 7 }
$$

Problem \#7 from homework

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } = x ^ { 2 } - 3 x - 1 8
$$

1	1 -4 -15 18 1 -3	-18	
1	-3	-18	0

This last number is the remainder when you divide:

$$
\begin{gathered}
x^{3}-4 x^{2}-15 x+18 \\
\text { by } \\
x-1
\end{gathered}
$$

Because the remainder $=0$, then $(x-1)$ is a factor AND $x=1$ is a zero of the original polynomial!

Division of Polynomials Box Method

$$
\left(2 x^{3}+15 x^{2}+27 x+5\right) \div(2 x+5)
$$

Only the upper left and bottom right boxes are known.

Diagonals have "like terms"
$\left(2 x^{3}+15 x^{2}+27 x+5\right) \div(2 x+5)=x^{2}+5 x+1$

Division with remainders
$\left(-x^{4}-5 x^{3}-2 x^{2}+4 x+1\right) \div(x+3)$
Only the upper left and bottom right boxes are known.

Diagonals have "like terms"

$$
\left(-x^{4}-5 x^{3}-2 x^{2}+4 x+1\right) \div(x+3)
$$

$$
=\left(-x^{3}-2 x^{2}+4 x-8+\frac{25}{x+3}\right)
$$

$$
\left(3 x^{5}+12 x^{4}+11 x^{3}+2 x^{2}-4 x-2\right) \div\left(3 x^{2}-1\right)
$$

Only the upper left and bottom right boxes are known.
Diagonals have "like terms"

Divide.
$k^{3}+12 k^{2}+19 k-72 \div k+9$

Problem \#9 from homework

