Math-3A

Lesson 11-10
3rd Degree Polynomials

Find the zeroes of the following $3^{\text {rd }}$ degree Polynomial
$y=x^{3}+5 x^{2}+4 x \quad$ Set $\mathrm{y}=0$
$0=x^{3}+5 x^{2}+4 x \quad$ Factor out the common factor.
$0=x\left(x^{2}+5 x+4 \quad\right.$ Factor the quadratic
$0=x(x+1)(x+4) \quad$ Identify the zeroes
$0, \quad-1, \quad-4$
"Nice" 3 ${ }^{\text {rd }}$ Degree Polynomial (with no constant term)

$$
\begin{aligned}
& y=x^{3}+6 x^{2}+4 x+(0) \\
& 0=x^{3}+6 x^{2}+4 x
\end{aligned}
$$

It has no constant term so it can easily be factored into ' x ' times a quadratic factor. $0=x\left(x^{2}+6 x+4\right.$
$x=0$

What if the quadratic factor is not factorable?

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-(6)}{2(1)} \\
& x=-3
\end{aligned}
$$

Convert the quadratic factor into vertex form and solve.

$$
\begin{gathered}
0=(x+3)^{2}-5 \\
x=-3 \pm \sqrt{5}
\end{gathered}
$$

$$
y=f(-3)=(-3)^{2}+6(-3)+4
$$

Zeroes:

$$
y=-5
$$

$$
\begin{aligned}
& \text { Leroes: } \\
& x=0,-3 \pm \sqrt{5}
\end{aligned}
$$

We have been factoring quadratics for quite a while!

Factor the following "nice" $3^{\text {rd }}$ degree polynomials then find the "zeroes" of the polynomial.

$$
\begin{gathered}
y=x^{3}+5 x^{2}-14 x \\
0=x^{3}+5 x^{2}-14 x \\
0=x\left(x^{2}+5 x-14\right) \\
0=x(x+7)(x-2) \\
0, \quad-7, \quad 2
\end{gathered}
$$

$$
y=3 x^{3}-24 x^{2}+6 x
$$

$$
\begin{gathered}
0=3 x\left(x^{2}-8 x+2\right) \\
x=0 \\
x=\frac{-b}{2 a}=\frac{-(-6)}{2(1)} \\
x=4 \\
y=f(4)=(4)^{2}-8(4)+2 \\
y=-14 \quad 0=(x+4)^{2}-14 \\
x=-4 \pm \sqrt{14}
\end{gathered}
$$

$$
\text { Another "Nice" } 3^{\text {rd }} \text { Degree Polynomial }
$$

$$
y=a x^{3}+b x^{2}+c x+d
$$

This has the constant term, but it has a very useful feature:

$$
y=1 x^{3}+2 x^{2}+2 x+4
$$

What pattern do you see?

$$
3 \mathrm{rd} / 1 s t=2 / 1 \quad 4 t h / 2 n d=4 / 2=2 / 1
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=4 x^{3}-5 x^{2}+12 x-15 \\
0=\left(x^{2}+3\right)(4 x-5) \\
0=x^{2}+3 \quad 4 x-5=0 \\
-3=x^{2} \quad 4 x \downarrow 5 \\
x= \pm i \sqrt{3} \quad x=5 / 4
\end{gathered}
$$

$$
x=\mathrm{i} \sqrt{3},-\mathrm{i} \sqrt{3}, 5 / 4
$$

What have we learned so far?

"Nice" Common Factor $3^{\text {rd }}$ degree polynomial:

$$
\begin{array}{r}
y=x^{3}+3 x^{2}+2 x \quad=x\left(x^{2}+3 x+2\right) \\
=x(x+1)(x+2)
\end{array}
$$

"Nice" Factor by box $3^{\text {rd }}$ degree polynomial:
$y=2 x^{3}+3 x^{2}+4 x+6$

$$
\begin{aligned}
& \text { Convert to standard form: } \\
& \begin{array}{l}
y=(x-3)\left(x^{2}+3 x+9\right) \\
y=x^{3}-27
\end{array}
\end{aligned}
$$

There are NO x^{2} terms and NO 'x' terms
The Difference of cubes: factors as the cubed root of each term multiplied by a $2^{\text {nd }}$ degree
polynomial. $\quad y=x^{3}-8$
$y=(x-2)\left(a x^{2}+b x+c\right)$
$y=(x-2)\left(x^{2}+2 x+4\right)$

	x	-3
x^{2}	x^{3}	$-3 x^{2}$
$3 x$	$3 x^{2}$	$-9 x$
9	$9 x$	-27
$0 x^{2}$	$0 x^{2}$	

"Nice" Difference of Squares (of higher degree):

$$
\begin{aligned}
& y=x^{4}-81 \quad \text { Use " } m \text { " substitution Let } \quad \begin{array}{ll}
m^{2}=x^{4} \\
y & \text { Then } \\
y=m^{2}-81 & m=x^{2} \\
y & =(m+9)(m-9)
\end{array}
\end{aligned}
$$

Use " m " substitution
$y=\left(x^{2}+9\right)\left(x^{2}-9\right)$
$y=(x+3)(x-3)(x+3 i)(x-3 i)$
Find the zeroes. $\quad x=-3,3,-3 \mathrm{i}, 3 \mathrm{i}$

$$
\begin{aligned}
& \text { The Sum of cubes: factors as the } \\
& \begin{array}{|l|l|l|l|}
\text { cubed root of each term } \\
\text { multiplied by a } 2^{\text {nd d degree }} \\
\text { polynomial. } y=x^{3}+64 & & x & 4 \\
\hline y y y & x^{2} & x^{3} & 4 x^{2} \\
\hline y=(x+4)\left(a x^{2}+b x+c\right) & -4 x & -4 x^{2} & -16 x \\
\hline & 16 & 16 x & 64 \\
\hline
\end{array}
\end{aligned}
$$

$y=(x+4)\left(x^{2}-4 x+16\right)$

