Math-3A
 Lesson 5-1
 Solve Rational Equations

Solving Rational Equations

Method \#1: eliminate the denominators one at a time.
Method \#2: Obtain common denominators for each term.

What does solve a single variable equation mean?

$$
3 x+2=11
$$

Find the value of the variable that makes the equation "true." What is a factor?

A number that is being multiplied by another number.

What is a least common multiple?
The smallest number that both factors divide (evenly).

Method \#1: eliminate the denominators one at a time.
$4=\frac{x}{5} \quad$ Multiply both sides by ' 5 ' $\quad 5 * 4=\frac{x}{5} * \frac{5}{1} \quad \mathrm{x}=20$
$4=\frac{x}{5}+\frac{3}{2} \quad$ Multiply both sides by ' 5 '
$5 * 4=5 *\left(\frac{x}{5}+\frac{3}{2}\right)$
Distributive Property: multiplication of terms being added.

$$
\begin{aligned}
& 20=\frac{\square 5 x}{3}+\frac{5 * 3}{2} \quad 20=x+\frac{15}{2} \quad \text { Multiply both sides by '2' } \\
& 2 * 20=2 *\left(x+\frac{15}{2}\right) \quad 40=2 x+\frac{2 / * 15}{2 \prime} \\
& 40=2 x+15 \quad 25=2 x \quad x=\frac{25}{2}
\end{aligned}
$$

Method \#1: eliminate the denominators one at a time.

What the excudedvalue?

What is the excluded value? $\quad x \neq 0$
$x * 2=\frac{10}{\not x} * \frac{\nless}{1} \quad \begin{aligned} & \text { Multiply both } \\ & \text { sides by ' } x \text { ' }\end{aligned} \quad 2 x=10 \quad x=5$

$$
\begin{array}{lc}
2=\frac{10}{x}+\frac{3}{5} \begin{array}{c}
\text { Multiply both } \\
\text { sides by 'x' }
\end{array} & 5 * 2 x=5 *\left(10+\frac{3 x}{5}\right) \\
x * 2=x *\left(\frac{10}{x}+\frac{3}{5}\right) & 10 x=50+\frac{5 * 3 x}{5} \\
2 x=\frac{\not x * 10}{\not x}+\frac{3 * x}{5} & 10 x=50+\frac{5 * 3 x}{5} \\
2 x=10+\frac{3 x}{5} \quad \begin{array}{l}
\text { Multiply both } \\
\text { sides by ' } 5 \text { ' }
\end{array} & 10 x=50+3 x \\
x=\frac{50}{7}
\end{array}
$$

$$
\begin{aligned}
& 4=\frac{12}{x-2} \begin{array}{l}
\text { What is the excluded value? } \\
\text { How do you get the ' } x-2 \text { ' out of the denominator? } \\
\text { Multiply both sides by ' }
\end{array} \\
& \begin{array}{l}
4(x-2)=\frac{12}{(x-2)} * \frac{(x-2)}{1}
\end{array} \\
& \begin{array}{l}
4(x-2)=12
\end{array} \quad x-2=3 \\
& \div 4
\end{aligned} \div 4 \quad+2=2 \quad x=5 .
$$

The solution to the equation does not equal the excluded value.
What would happen if the solution DID equal the excluded value?
We reject the solution. It is called an extraneous solution.

Find the excluded values and then solve the equations.

$$
5=\frac{20}{(x+1)}
$$

$$
4=\frac{30}{(x-2)}-6
$$

Variable on both sides of the equation

$$
\underline{3}=\underline{2} \quad \text { Excluded values? } \quad x \neq-1,0
$$

Eliminate denominators one at a time.
$\frac{\not x}{1} * \frac{3}{\not x}=\frac{2}{x+1} * \frac{x}{1}$
Multiply both sides by ' x '

$$
\begin{array}{cc}
3=\frac{2 x}{x+1} & \text { Multiply both sides by }(x+1) \\
(x+1) * 3=\frac{2 x}{(x+1)} * \frac{(x+1)}{1} & \begin{array}{r}
3 x=2 x-3 \\
-2 x-2 x
\end{array} \\
3 x+3=2 x & x=-3 \\
-3-3
\end{array}
$$

Find the excluded values then solve the equations:
$3=\frac{2 x}{x+1}$

$x \neq-1$
$x=-3$

$\frac{3}{x+1}=\frac{9}{4 x+5}$

$$
\begin{gathered}
x \neq-1,-\frac{5}{4} \\
x=-2
\end{gathered}
$$

Eliminate one Denomiator at a time.

$$
(4 x+5) * \frac{3}{x+1}=\frac{9}{4 x+5} *(4 x+5)
$$

$$
(x+4) * \frac{3(4 x+5)}{x+1}=9^{*}(x+1)
$$

$3(4 x+5)=9(x+1) \quad 3(4 x+5)=9(x+1)$
Distributive property

$$
12 x+15=9 x+9
$$

$$
3 x+15=9
$$

$$
3 x=-6
$$

$$
x=-2
$$

Divide both sides by 3

$$
\begin{gathered}
4 x+5=3(x+1) \\
4 x+5=3 x+3 \\
x+5=3 \\
x=-2
\end{gathered}
$$

Method 2: Obtain a common denominator

$$
(4 x+5)^{*}{ }_{(4 x+5)}^{*} \frac{3}{x+1}=\frac{9}{4 x+5} \quad{ }^{*}(x+1)
$$

Multiply both sides by the common denominator

$(4 x+5)(x+1) \frac{3(4 x+5)}{(4 x+5)(x+1)}=\frac{9(x+1)(4 x+5)(x+1)}{(4 x+5)(x+1)}$

Solve: $\quad 3(4 x+5)=9(x+1)$

$$
x=-2
$$

Identify the excluded value then solve.

$$
\frac{9}{5}=\frac{4}{x+2}
$$

$$
\begin{aligned}
& x \neq-2 \\
& x=\frac{2}{9}
\end{aligned}
$$

$$
\frac{9}{5}=\frac{4}{x+6}
$$

$$
\begin{aligned}
& x \neq-6 \\
& x=\frac{-34}{9}
\end{aligned}
$$

$$
\frac{4}{x}+x=5 \quad \mathrm{x}^{*}\left(\frac{4}{x}+x\right)=5^{*} \mathrm{x}
$$

$$
4+x^{2}=5 x
$$

$4+x^{2}=5 x$
Now what?

It's a quadratic, solve the quadratic!
put into standard form !!!

$$
\begin{gathered}
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
x=4 \quad x=1
\end{gathered}
$$

Rational equations with 2 solutions.
$1+\frac{8}{x-5}=-\frac{9}{x} \quad$ Eliminate denominators one at at time.

$$
\begin{aligned}
& \frac{(x-5)}{1}\left(1+\frac{8}{x-5}\right)=\left(-\frac{9}{x}\right) \frac{(x-5)}{1 \text { Carefull: distributive property }} \\
& \left(\frac{(x-5)}{1} * \frac{1}{1}\right)+\left(\frac{(x-5)}{1} * \frac{8}{(x-5)}\right)=\left(-\frac{9}{x}\right) \frac{(x-5)}{1} \\
& \frac{(x-5)}{1}+\left(\frac{8}{1}\right)=\frac{-9(x-5)}{x}
\end{aligned}
$$

(continued)

$$
\begin{aligned}
& \frac{(x-5)}{1}+\left(\frac{8}{1}\right)=\frac{-9(x-5)}{x} \\
& x+3=\frac{-9(x-5)}{x} \quad \text { Multiply } \\
& x(x+3)=\frac{-9(x-5)}{x} * \frac{\alpha}{1}
\end{aligned}
$$

simplify

$$
1+\frac{8}{x-5}=-\frac{9}{x}
$$

Extraneous Solution: a solution obtained algebraically that is not in the domain of the original equation.
$\frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3} \quad \frac{\text { What are th }}{x \neq 0,3}$
Eliminate denominators one at at time.
Careful: distributive property

$$
\left(\frac{x}{1}\right)\left(\frac{2}{x-3}+\frac{1}{x}\right)=\left(\frac{x-1}{x-3}\right)\left(\frac{x}{1}\right)
$$

$$
\frac{2 x}{x-3}+1=\frac{x^{2}-x}{x-3}
$$

$$
\frac{2 x}{x-3}+1=\frac{x^{2}-x}{x-3} \text { Eliminate denominators one at at time. }
$$

Careful: distributive property

$$
\left(\frac{x-3}{1}\right)\left(\frac{2 x}{x-3}+1\right)=\left(\frac{x^{2}-x}{x-3}\right)\left(\frac{x-3}{1}\right)
$$

$$
2 x+(x-3)=x^{2}-x
$$

$$
3 x-3=x^{2}-x
$$

$$
x^{2}-4 x+3=0
$$

Vocabulary
Extranious Solution: a solution obtained algebraically that is an excluded value of the original equation.

$$
\begin{array}{ll}
\frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3} & \frac{2}{1-3}+\frac{1}{1}=\frac{1-1}{1-3} \\
x^{2}-4 x+3=0 & \frac{2}{-2}+\frac{1}{1}=\frac{0}{-2} \\
(x-3)(x-1)=0 & -1+1=0
\end{array}
$$

Are both $x=1,3$ in the domain of the original equation?

Only $x=1$ is in the domain.

Solve. Check to see if the solution is extraneous.

$$
\frac{3 x+6}{x^{2}-4}=\frac{x+1}{x-2}
$$

$$
\frac{x}{2}+3=\frac{3}{4 x}
$$

$$
x=2,-2
$$

both are excluded values: "no solution"

$$
x=-3 \pm \sqrt{21}
$$

neither are excluded values

$$
\frac{1}{2 x}=\frac{1}{6}+\frac{x^{2}-x-12}{6 x^{2}}
$$

$$
\begin{aligned}
& \quad x=1 \pm \sqrt{7} \\
& \text { neither are excluded values }
\end{aligned}
$$

$\frac{1}{x^{2}}=\frac{1}{4 x^{2}}-\frac{x+3}{4 x^{2}}$

