Math-3A
 Lesson 12-8 Solve Rational Equations

Solving Rational Equations

Method \#1: eliminate the denominators one at a time.

Method \#2: Obtain common denominators for each term and then eliminate all the denominators in one step by multiplying by the common denominator.

Method \#3: Determine what the common denominator will be and multiply by that number.

What does solve a single variable equation mean?

$$
3 x+2=11
$$

Find the value of the variable that makes the equation "true." What is a factor?

A number that is being multiplied by another number.
What is a least common multiple?
The smallest number that both factors divide (evenly).

Method \#1: eliminate the denominators one at a time.

$$
2=\frac{10}{x}+\frac{3}{5} \quad \begin{aligned}
& \text { Multiply both } \\
& \text { sides by } \\
& \text { ' } x \text { ' }
\end{aligned}
$$

$$
x * 2=x *\left(\frac{10}{x}+\frac{3}{5}\right) \quad \text { Careful! (Distributive Property) }
$$

$$
2 x=\frac{\not \not * 10}{\not x}+\frac{3 * x}{5}
$$

$$
2 x=10+\frac{3 x}{5} \quad \begin{aligned}
& \text { Multiply both } \\
& \text { sides by ' } 5 \text { ' }
\end{aligned}
$$

$$
\begin{gathered}
10 x=50+\frac{5 * 3 x}{5} \\
10 x=50+3 x \\
x=\frac{50}{7}
\end{gathered}
$$

Method \#2: Obtain a common denominator (then multiply by the common denominator.
$2=\frac{10}{x}+\frac{3}{5}$ Multiply by "one in the form of..."
$\frac{5 x}{5 x} * 2=\frac{5}{5} * \frac{10}{x}+\frac{3}{5} \frac{x}{* x}$
$\frac{10 x}{5 x}=\frac{50}{5 x}+\frac{3 x}{5 x}$ Multiply by the common denominator
$10 x=50+3 x \quad$ Solve for ' x '
$7 x=50 \quad x=\frac{50}{7}$

Method \#3: multiply by the common denominator
$2=\frac{10}{x}+\frac{3}{5}$ The common denominator would be: $\underline{5 x}$
$2 * 5 x=\left(\frac{10}{x}+\frac{3}{5}\right) * 5 x \quad \begin{aligned} & \text { Multiply by the } \\ & \text { common denominator }\end{aligned}$
$2 * 5 x=\frac{10}{x} * 5 x+\frac{3}{5} * 5 x \quad$ Careful! (Distributive Property)
$10 x=50+3 x \quad$ Solve for ' x '
$7 x=50 \quad x=\frac{50}{7}$

Extraneous Solution: a solution obtained algebraically

that is not in the domain of the original equation.
$\frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3} \quad \frac{\text { What are the excluded values }}{x \neq 0,3}$
Multiply by the common denominator
Careful: distributive property

$$
\begin{aligned}
& x(x-3) *\left(\frac{2}{x-3}+\frac{1}{x}\right)=\frac{(x-1)}{(x-3)} * x(x-3) \\
& 2 x+(x-3)=x(x-1) \quad \text { Simplify left side/right side } \\
& 3 x-3=x^{2}-x \quad \text { Non-standard quadratic } \\
& 0=x^{2}-4 x+3 \quad \text { Standard form quadratic } \\
& 0=(x-3)(x-1) \quad x=\$ 1 \quad \text { Extraneous solution? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \quad \frac{1}{2 x}=\frac{1}{6}+\frac{x^{2}-x-12}{6 x^{2}} \\
& 6 x^{2} *\left(\frac{1}{2 x}\right)=\left(\frac{1}{6}+\frac{x^{2}-x-12}{6 x^{2}}\right) * 6 x^{2} \\
& 3 x=x^{2}+\left(x^{2}-x-12\right) \quad \text { Simplify left side/right side } \\
& 3 x=2 x^{2}-x-12
\end{aligned} \quad \text { Non-standard quadratic } \quad \begin{array}{ll}
0=2 x^{2}-4 x-12 & \text { Divide by 2 } \\
0=x^{2}-2 x-6 & \text { Non-factorable } \\
0=(x-1)^{2}-7 & \text { (1) Quadratic formula } \\
\begin{array}{ll}
\text { (2) Convert to vertex form }
\end{array} \\
x=1 \pm \sqrt{7} & \text { neither are excluded values }
\end{array}
$$

