Math-2 Lesson 7-6

Solving Right Triangles Using Trigonometric Ratios

Angle: two rays with a common end point.

We can say the sides of the angle are "next to" the interior of the angle.

Angle interior A

Another way to say "next to" is "ADJACENT".

Using Angle A as the "<u>reference</u>" angle, we <u>need a name for</u> the other leg of the right triangle.

Accuracy of measurements.

The <u>smallest distance</u> between each "tic mark" on the ruler is 0.1 cm (or 1 mm).

on a tic mark, or between a tic mark. The limit of our ability to measure accurately is halfway between each tic mark or 0.05 cm (0.5 mm).

A length either falls

When proving Triangle Similarity, we compared the lengths of corresponding sides between two different triangles.

Now we "shift gears" to learn a <u>completely new concept</u> which is

GIGANTICALY important in mathematics.

The entire basis of this idea comes from the measures of sides and angles of similar right triangles.

Group Activity: Each of you has a 30-60-90 triangle. There are three different sizes of triangles. All three triangles are similar by the AA Similarity Theorem.

- 1. To the nearest 0.1 centimeter, measure lengths: BC, AC, and AB (write these lengths on your triangles.
- 2. Calculate and write the value of the ratios (in order), BC/AB, AC/AB, and BC/AC.

Getting back to our Activity: instead of making ratios out of corresponding sides of two different triangles we made ratios of

$$\frac{BC_1}{AB_1} = \frac{14.45}{28.85} = 0.50$$

We compare this to the same ratio of sides of the other triangles.

$$\frac{BC_2}{AB_2} = \frac{8.65}{17.30} = 0.50$$

$$\frac{BC_3}{AB_3} = \frac{5.75}{11.55} = 0.50$$

Conclusion: the size of the triangle DOES NOT MATTER—the ratio of the <u>opposite side</u> of a 30° angle to the <u>hypotenuse</u> of a 30-60-90 right triangle <u>will always be the same number.</u>

The $\frac{opposite}{hypotenuse}$ ratio is called the sine ratio.

$$\frac{BC_3}{AB_3} = \frac{opp_{30}}{hyp_{30}} = \frac{5.75}{11.55} = 0.50$$

Another way to say $\frac{opp_{30}}{hyp_{30}}$

Is
$$\sin 30 = \frac{opp_{30}}{hyp_{30}}$$

"Ratios" are decimal form (not in fraction form).

These "Ratios" are unique numbers for each angle; they are <u>Properties of the angle.</u>

Angle	$\frac{opp}{hyp}$
10°	0.1736
20°	0.3420
30°	0.5
43.9°	0.6934
60°	0.8660

Radian	Degree	Sine	Cosine	Tan
0.000	0	0.000	1.000	0.0
0.017	1	0.017	1.000	0.0
0.035	2	0.035	0.999	0.0
0.052	3	0.052	0.999	0.0
0.070	4	0.070	0.998	0.0
0.087	5	0.087	0.996	0.0
0.105	6	0.105	0.995	0.1
0.122	7	0.122	0.993	0.1
0.140	8	0.139	0.990	0.1
0.157	9	0.156	0.988	0.1
0.175	\bigcirc 10	0.174	0.985	0.1
0.192	11	0.191	0.982	0.1
0.209	12	0.208	0.978	0.2

"The <u>sine ratio</u> (for reference angle A) is the length of the leg opposite of angle A divided by the length of the hypotenuse".

$$\cos A = \frac{adj}{hyp}$$

"The cosine ratio (for reference angle A) is the length of the leg adjacent to angle A divided by the length of the hypotenuse."

$$\tan A = \frac{opp}{adj}$$

"The <u>tangent ratio</u> (for reference angle A) is the length of the leg opposite to angle A divided by the length of the leg adjacent to angle A."

The ratio is a property of the angle. We <u>must know which of the two</u> <u>acute angles we are referring</u> to in order to find the correct ratio.

$$sin = rac{opp}{hyp}$$

$$\sin\theta = \frac{opp}{hyp}$$
YES

SOH-CAH-TOA

$$\sin\theta = \frac{o}{h}$$

$$\cos \theta = \frac{a}{h}$$

$$\tan\theta = \frac{o}{a}$$

The <u>easy way to remember</u> what sides of the triangle to use in ratios.

These ratios only work for right triangles!!!

Sine Ratio

What is the sine ratio of angle A?

$$\sin A = \frac{opp}{hyp}$$

Sine ratio of angle A is

$$\sin A = \frac{3}{5}$$

What is the cosine ratio for angle A?

$$\cos A = \frac{adj}{hyp}$$

Cosine ratio for angle A is

$$\cos A = \frac{4}{5}$$

What is the cosine ratio of angle A?

$$\cos A = \frac{Adj}{hyp}.$$

$$\cos A = \frac{x}{8}$$

IF (right triangle) THEN

$$\cos A = \frac{\sqrt{15}}{8}$$

How do we find the value represented by 'x'?

$$a^{2} + b^{2} = c^{2}$$

$$7^{2} + x^{2} = 8^{2}$$

$$x^{2} = 8^{2} - 7^{2}$$

$$x = \sqrt{64 - 49}$$

$$x = \sqrt{15}$$

What is the sine ratio of angle A?

$$\sin A = \frac{opp}{hyp}$$

$$\sin A = \frac{x}{7}$$

IF (right triangle) THEN

$$\sin A = \frac{\sqrt{13}}{7}$$

How do we find the value represented by 'x'?

$$a^2 + b^2 = c^2$$

$$x^2 + 6^2 = 7^2$$

$$x^2 = 7^2 - 6^2$$

$$x = \sqrt{49 - 36}$$

$$x = \sqrt{13}$$

Solve a triangle: to find the measure of the unknown angles and side lengths.

To find an unknown value you need an equation!

There are <u>five</u> equations that relate to <u>right triangles</u>.

IF (right triangle) THEN

1)
$$a^2 + b^2 = c^2$$

$$2) \quad \sin A = \frac{o}{h}$$

3)
$$\cos A = \frac{a}{h}$$

4)
$$\tan A = \frac{o}{a}$$

and IF (any triangle) THEN

5)
$$m \angle A + m \angle B + M \angle C = 180^{\circ}$$

"Solve the triangle" (find the missing side and angle measures)

1)
$$a^2 + b^2 = c^2$$

2)
$$\sin A = \frac{o}{h}$$

3)
$$\cos A = \frac{a}{h}$$

4)
$$tan A = \frac{0}{a}$$

5)
$$(m \angle A + m \angle B + M \angle C = 180^{\circ}) \rightarrow m \angle B = 52^{\circ}$$

Solve the triangle.

1)
$$a^2 + b^2 = c^2$$

2)
$$\left(\sin A = \frac{o}{h}\right) \rightarrow \sin 38^\circ = \frac{opp}{5}$$

$$3) \cos A = \frac{a}{h}$$

$$0.616 = \frac{opp}{5}$$

$$5(0.616) = opp = 3.08$$

4)
$$\tan A = \frac{o}{a}$$

5)
$$m \angle A + m \angle B + M \angle C = 180^{\circ}$$

Solve the triangle.

$$1) (a^2 + b^2 = c^2) \rightarrow$$

$$2) \sin A = \frac{o}{h}$$

3)
$$\cos A = \frac{a}{h}$$

4)
$$\tan A = \frac{o}{a}$$

$$c^{2} \rightarrow c^{2} \rightarrow c^{2$$

$$(adi)^2 = 25 - 9.49$$

$$(adj)^2 = 15.51$$

$$adj = \sqrt{15.51} = 3.94$$

5)
$$m \angle A + m \angle B + M \angle C = 180^{\circ}$$

Solve the triangle.

1)
$$a^2 + b^2 = c^2$$

$$2) \sin A = \frac{o}{h}$$

3)
$$\cos A = \frac{a}{h}$$
 \Rightarrow $\cos 38^{\circ} = \frac{adj}{5}$
 $0.788 = \frac{adj}{5}$
 $5(0.788) = adj$

4)
$$\tan A = \frac{0}{2}$$

5)
$$m \angle A + m \angle B + M \angle C = 180^{\circ}$$

Usually, the problem only asks you to solve for 'x'

1)
$$a^2 + b^2 = c^2$$

2)
$$\left(\sin A = \frac{o}{h}\right) \rightarrow \sin 29^\circ = \frac{x}{8}$$

3)
$$\cos A = \frac{a}{h}$$
 $0.485 = \frac{x}{8}$

8(0.485) = opp

4)
$$\tan A = \frac{o}{a}$$

4)
$$tan A = -a$$

5)
$$m \angle A + m \angle B + M \angle C = 180^{\circ}$$

= 3.9

The Hardest problem

$$\sin A = \frac{o}{h} \qquad \sin 65^{\circ} = \frac{6}{x}$$

$$0.906 = \frac{6}{x}$$

 $0.906 = \frac{6}{x}$ 'x' is in the <u>denominator!</u>

$$x(0.906) = 6$$
 "undo" division by 'x'

$$x = \frac{6}{0.906} = 6.6$$