Math-2A

Lesson 4-6

Linear Regression

Graphing x-y pairs on the TI-84 Calculator

We must enter the x - y pairs into a table. This table is different from the one the calculator puts numbers into for equations you enter in " $y=$ " \rightarrow (2 $2^{\text {nd }}+$ graph $)$

1. "stat" push button (p/b)

"pull-down" menus. Edit (1) edit \rightarrow is for editing lists of numbers
2. Select "edit" p / b

List 1 ("L1") is always used to list x-values that you want to graph.
3. Enter x-values into List $1, y$-values into List 2.

x	-2	-1	0	1	2	3
y	10	6	5	6	10	19

4. Make sure your window will display the all the x and y value in the data

x	-2	-1	0	1	2	3
y	10	6	5	6	10	19

Set your "window" to

Will this window contain all of the $x-y$ pairs?

$$
\begin{aligned}
& x(\min)=-10 \\
& x(\max)=10 \\
& y(\min)=-5 \\
& y(\max)=25
\end{aligned}
$$

5. "Turn on" plot-1: (Plot-1 uses x values from L1 and y-values from L2)
\rightarrow Go to " $y=$ " and make sure Plot1 is highlighted.

70ati Flotz	Flots
V1日2X	
Vz=	
$\because V_{4}=$	
ソ5=	
$\times{ }^{6}=$	
$\lambda^{*} V_{7}=$	

6. "Graph" your points and look at the shape

Is the data linear?

Is the following data linear?

x	1	5	9	13	17	21
y	-11	-13	-15	-17	-19	-21

Convert the table of values above into a graph on the TI-84 calculator.
Is the data linear (do the points when graphed "line up"?

Regression: the process of converting data ($x-y$ pairs) into an equation.

Linear Regression: the process of converting linear data into a linear equation.

x	1	5	9	13	17	21
y	-11	-13	-15	-17	-19	-21

Linear Regression on the TI-84 Calculator

After you have:
a) Entered the table into L1 and L2

x	1	5	9	13	17	21
y	-11	-13	-15	-17	-19	-21

b) Made sure the window will display all of the (x, y) pairs

c) Turned on your Plot-1

d) And graphed the $x-y$ pairs to make sure they are linear

1. "stat" p / b)
2. "calc" p/b and select "LinReg (ax + b)" (linear regression)

3. If you put all the $x-y$ pairs into L1 and L2, hit "enter" p/b; the calculator will give
```
LinReg
    - =ax+b
    a=2
```

4. Enter this equation into your calculator
5. Graph your equation to make sure it passes through the points ("graph" p/b).

Linear regression only requires two points (if the data is linear) Is the following data linear?

If the data is linear enter the following data into L1 and L2

L1	1	5				
L2	-11	-13				

Find the equation of the line using Linear Regression.

Linear regression is the nice way to find the equation of a line if the y-intercept is not given in the table.

x	-2	1	4
y	-12	3	18

x	-6	3	6
y	2	8	10

Find each equation that fits the data.

x	-10	5	10
y	15	3	-1

