SM3 VOCAB 4-4 (Analyzing Functions)

Even Function: a function that is symmetrical across the y-axis.
The square and absolute value functions are even unless they have been shifted left or right.

$$
f(x)=x^{2} \quad f(x)=|x|
$$

Mathematically, a function is even if the original function is equivalent to the function with ' x ' replaced with ' $-x$ ' which means that if it is reflected across the y-axis, it should look exactly like the original equation.

$$
f(x)=f(-x) \quad f(x)=x^{2} \rightarrow f(-x)=(-x)^{2} \rightarrow f(-x)=(-x)(-x) \rightarrow x^{2} ; f(-x)=f(x)
$$

Odd function: If you reflect it across the x-axis, it looks exactly the same as if you reflect it across the y-axis. We would rather say, that a function is odd if it is symmetrical across the origin.

The linear function is odd unless it has been moved either up/down or left/right $\quad f(x)=x$
Mathematically, a function is odd if the original function is equivalent to the function multiplied by -1 and with ' x ' replaced with ' $-x$ '. This means that the graph should look exactly the same if it has been reflected across the x axis and then reflected across the y-axis.

$$
f(x)=-f(-x) \quad f(x)=x \rightarrow-f(-x)=(-1)(-x) \rightarrow x ; f(x)=-f(-x)
$$

Average rate of change: Most functions are not linear. Since the slope of a curved graph is not constant, we can find the average rate of change between two points on the graph. This is the slope of a line passing through the two points.

A Function is Increasing: if a tangent line at a point on the graph has a positive slope, the function is increasing at that point. Functions change from increasing to/from decreasing at "peaks" or "valleys" in the graph. The function is NEITHER increasing nor decreasing at the peak or valley.

$$
f(x) \uparrow \text { for } x=(-\infty, 2)
$$

A Function is decreasing: if a tangent line at a point on the graph has a negative slope, the function is decreasing at that point. Functions change from increasing to/from decreasing at "peaks" or "valleys" in the graph.

$$
f(x) \downarrow \text { for } x=(-\infty, 2)
$$

A function is positive: wherever the y -value of a point is positive. Functions change to/from positive wherever they cross the x-axis.

$$
f(x)>0 \text { for } x=(-\infty, 1] \cup[3, \infty)
$$

Extrema: the y-value of points that are extrema are either (1) the maximum or minimum y-value on the graph, OR (2) compared the points adjacent to them, are either the maximum or minimum y-value.

For the graph above there is an "absolute minimum" at $(2,-1)$ since $y=-1$ is the absolute minimum y value of the range.

End behavior is a description of which direction the graph is going (up or down) on the right and left ends of the graph. We use "infinity notation" to describe this. $\quad x \rightarrow \infty$ Means "right end of the graph". We need to describe both the right and left ends.
as $x \rightarrow+\infty, y \rightarrow+\infty$ means "on the right end of the graph, the graph is going upward (forever). as $x \rightarrow-\infty, y \rightarrow+\infty$ means "on the left end of the graph, the graph is going upward (forever).

