SM2 THEOREMS 7-3 (Special Angle Pairs)

Angle Addition Postulate: If $\angle A B C$ and $\angle C B D$ are adjacent angles, then $m \angle A B C+\angle C B D=\angle A B D$

$$
\angle A B C \text { is adjacent to } \angle C B D
$$

Vertical Angle Pair Theorem: If two angles are vertical angles to each other, Then the two angles are congruent.

Linear Pair Theorem: If two angles form a linear pair then the they are supplementary (add up to 180).

Corresponding Angles Postulate: If two parallel lines are "cut" by a transversal, then corresponding angles are congruent.

$$
\angle 1 \cong \angle 5 \quad \angle 2 \cong \angle 6 \quad \angle 4 \cong \angle 8 \quad \angle 3 \cong \angle 7
$$

Alternate Interior Angle Theorem: If two parallel lines are "cut" by a transversal, then alternate interior angles are congruent. $\quad \angle 4 \cong \angle 6 \quad \angle 3 \cong \angle 5$

Alternate Exterior Angle Theorem: If two parallel lines are "cut" by a transversal, then alternate exterior angles are congruent.

$$
\angle 1 \cong \angle 7 \quad \angle 2 \cong \angle 8
$$

Consecutive Interior Angle Theorem: If two parallel lines are "cut" by a transversal, $\underline{\text { then }}$ consecutive interior angles are supplementary.

$$
m \angle 4+m \angle 5=180 \quad m \angle 3+m \angle 6=180
$$

