SM2 THEOREMS 7-3 (Special Angle Pairs)

<u>Angle Addition Postulate</u>: <u>If</u> $\angle ABC$ and $\angle CBD$ are adjacent angles, <u>then</u> $m \angle ABC + \angle CBD = \angle ABD$

Vertical Angle Pair Theorem: If two angles are vertical angles to each other, Then the two angles are congruent.

Linear Pair Theorem: If two angles form a linear pair the they are supplementary (add up to 180).

<u>Corresponding Angles Postulate</u>: <u>*If*</u> two parallel lines are "cut" by a transversal, <u>*then*</u> corresponding angles are congruent.

$$\angle 1 \cong \angle 5$$
 $\angle 2 \cong \angle 6$ $\angle 4 \cong \angle 8$ $\angle 3 \cong \angle 7$

<u>Alternate Interior Angle Theorem</u>: <u>If</u> two parallel lines are "cut" by a transversal, <u>then</u> alternate interior angles are congruent. $\angle 4 \cong \angle 6$ $\angle 3 \cong \angle 5$

<u>Alternate Exterior Angle Theorem</u>: <u>If</u> two parallel lines are "cut" by a transversal, <u>then</u> alternate exterior angles are congruent. $\angle 1 \cong \angle 7 \qquad \angle 2 \cong \angle 8$

<u>Consecutive Interior Angle Theorem</u>: <u>If</u> two parallel lines are "cut" by a transversal, <u>then</u> consecutive interior angles are supplementary. $m \angle 4 + m \angle 5 = 180$ $m \angle 3 + m \angle 6 = 180$

