SM2 THEOREMS 7-2 (Distance and Triangle Congruence)

The Pythagorean Theorem:
IF the triangle is a right triangle,
THEN the lengths of the sides are related by: $a^{2}+b^{2}=c^{2}$
Theorem is a statement that has been proven to be true.
Theorems are usually written in
"IF hypothesis, THEN conclusion " format.

If the hypothesis is true then we know the conclusion is true.
We exchange the hypothesis and conclusion to get a converse.
The converse of Pythagorean theorem is also the true (but this doesn't work for all theorems).

Pythagorean Theorem

IF the relationship between the side of a triangle make the following statement true, $a^{2}+b^{2}=c^{2}$
THEN the it is a right triangle.

SM2 THEOREMS 7-2 (Continued)

Side-Side-Side (SSS) Congruency Axiom: if all three pairs of corresponding sides of a triangle are congruent, then the triangles are congruent
$\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{C A} \cong \overline{F D}$
Therefore, $\triangle A B C \cong \triangle D E F$ by $\underline{\text { SSS }}$

Angle-Side-Angle (ASA) Congruency Axiom: if two angles and their included side are congruent, then the two triangles are congruent.
$\angle A B C \cong \angle D E G ; \overline{B C} \cong \overline{E G} ; \angle B C A \cong \angle E G D$
Therefore, $\triangle A B C \cong \triangle D E G$ by ASA

Side-Angle-Side (SAS) Congruency Axiom: if two pairs of corresponding sides and the pair of included angles are congruent, then the triangles are congruent.

$$
\overline{X Z} \cong \overline{Q R}, \angle Z X Y \cong \angle R Q F, \text { and } \overline{X Y} \cong \overline{Q F}
$$

Therefore, $\triangle X Y Z \cong \triangle Q F R$ by $\underline{\text { SAS }}$

Angle-Angle-Side (AAS) Congruency Axiom: If two pairs of corresponding angles are congruent and one pair of corresponding sides are congruent (which are NOT the included side), then the two triangles are congruent.
$\angle Z X Y \cong \angle E F D, \angle X Y Z \cong \angle F D E, \overline{X Z} \cong \overline{F E}$
Therefore, $\triangle X Y Z \cong \triangle F D E$ by $\underline{\text { AAS }}$

