Math-2
 Lesson 9-5
 More

Exponential Modeling

1. Money
2. Cooling

Find the equation of the graph.

1. Horizontal asymptote: $\mathrm{y}=5$

$$
y=A B^{x}+5
$$

2. Passes through: $(x, y)=(0,8)$

$$
\begin{gathered}
8=A B^{0}+5 \rightarrow 8=A+5 \rightarrow A=3 \\
y=3 B^{x}+5
\end{gathered}
$$

3. Passes through: $(x, y)=(1,7)$

$$
7=3 B^{1}+5 \rightarrow 2=3 B \rightarrow B=2 / 3
$$

$$
y=A B^{x}+k \quad \rightarrow \quad y=3(2 / 3)^{x}+5
$$

Find the equation of the graph.

1. Horizontal asymptote: $y=80$ $T(t)=A B^{t}+80$
2. Passes through: $(\mathrm{t}, \mathrm{T})=(0,350)$ $350=A B^{0}+80 \rightarrow 270=A$

$$
T(t)=270 B^{t}+80
$$

3. Passes through: $(\mathrm{t}, \mathrm{T})=(4,163)$
$163=270 B^{4}+80 \rightarrow \frac{163-80}{270}=B^{4}=0.3074$

$$
\rightarrow \quad B=\sqrt[4]{0.3074}=0.7446
$$

$$
T(t)=A B^{t}+m
$$

$$
\rightarrow T(t)=270(0.7446)^{t}+80
$$

2. What will be the temperature in 10 minutes?

$$
\begin{aligned}
& T(10)=270(0.7446)^{10}+80 \\
& T(10)=94.1 F
\end{aligned}
$$

$T \in m p(0,100)$

Time (min.)

$$
T(t)=a(b)^{t}+k
$$

1) Horizontal Asymptote

$$
T(t)=a(b)^{t}+15
$$

2) y-intercept

$$
\begin{aligned}
& 100=a(b)^{0}+15 \\
& a=85
\end{aligned}
$$

3) "nice point"
$50=85(b)^{9}+15$

Boiling water $\left(100^{\circ} \mathrm{C}\right)$ is taken off the stove to cool in a room at $15^{\circ} \mathrm{C}$. After 9 minutes, the water's temperature is 50 C .
Write the modeling equation as a base 'b' exponential.

$$
\begin{aligned}
& \left(\frac{50-15}{85}\right)=(b)^{9} \\
& \left(\frac{50-15}{85}\right)^{1 / 9}=b \\
& b=0.906 \\
& \text { 4) Final equation }
\end{aligned}
$$

$$
T(t)=85(0.906)^{t}+15
$$

Find the equation of the graph.

1. Find 't' to reach 150 F

$$
\begin{aligned}
& T(t)=270(0.7446)^{t}+80 \\
& 150=270(0.7446)^{t}+80 \\
& \frac{150-80}{270}=(0.7446)^{t} \\
& \quad \rightarrow 0.2593=(0.7446)^{t}
\end{aligned}
$$

How do we solve for 't'?

1. "Guess and check" \rightarrow build a table and try some values for ' t '

t	4	4.2	4.4	4.5	4.6
T	0.307	0.290	0.273	0.265	0.258

2. Solve by graphing: $\quad y_{1}=270(0.7446)^{t}+80$

$$
y_{2}=150
$$

A cup of hot water is taken out of the microwave oven. Its initial temperature is 100 C . It is placed on the counter in a room whose temperature is 30 C . In 5 minutes it has cooled to $\underline{72 \mathrm{C} \text {. When will it reach } 40 \mathrm{C} \text {. } . \text {. } \mathrm{Cl} \text {. }}$ 1. Draw a graph that shows temperature as a function of time.
2. What is the equation of the graph? (use the following equation). $T(t)=A B^{t}+k$

3. Draw a horizontal line for $\mathrm{T}=40$
4. Solve by graphing

$$
\begin{aligned}
& y_{1}=70(0.903)^{t}+30 \\
& y_{2}=40
\end{aligned}
$$

A cake taken out of the oven at temperature of $450^{\circ} \mathrm{F}$. It is placed on in a room with an ambient temperature of $75^{\circ} \mathrm{F}$ to cool. 10 minutes later the temperature of the cake is $180^{\circ} \mathrm{F}$. When will the cake be cool enough to put the frosting on $\left(90^{\circ} \mathrm{F}\right)$? $\quad\left(\mathrm{t}=\right.$?, $\left.90^{\circ} \mathrm{F}\right)$
Start with either:

$$
\begin{aligned}
& T(t)=A B^{t}+k \\
& T(t)=375(0.8805)^{t}+75 \\
& T(t)=90
\end{aligned}
$$

Solve by graphing

A hard-boiled egg at temperature $212^{\circ} \mathrm{F}$ is placed in $60^{\circ} \mathrm{F}$ water to cool. 5 minutes later the temperature of the egg is $95^{\circ} \mathrm{F}$. When will the egg be $75^{\circ} \mathrm{C}$?

A cake taken out of the oven at temperature of $350^{\circ} \mathrm{F}$. It is placed on in a room with an ambient temperature of $70^{\circ} \mathrm{F}$ to cool. Ten minutes later the temperature of the cake is $150^{\circ} \mathrm{F}$. When will the cake be cool enough to put the frosting on ($90^{\circ} \mathrm{F}$) ?

You deposit \$100 money into an account that pays 3.5\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 1st year?

$$
\begin{array}{ll}
A(1)=\$ 100+\$ 100(0.035) \\
\text { Original amount } & \text { There will be a } \\
(\$ 100) \text { will still be } & \text { small amount of } \\
\text { in the account. } & \text { growth }(3 \% \text { of } \$ 100)
\end{array}
$$

Factor out the common factor $\$ 100$

$$
\begin{gathered}
A(1)=\$ 100(1+0.035)=\$ 100(1.035) \\
A(2)=\$ 100(1.035)^{2} \\
A(3)=\$ 100(1.035)^{3} \\
A(t)=\$ 100(1.035)^{t} \\
A(t)=A_{0}(1+r)^{t}
\end{gathered}
$$

A bank pays 3% interest per year, and they pay you each month, what is the monthly interest rate?

A bank pays 5% interest per year, and they pay you each month, what is the monthly interest rate?

$$
0.05 \text { per year } \rightarrow \frac{0.05}{12} \text { per month } \rightarrow 0.0042 \text { per month }
$$

The exponential growth equation for money in a bank for account where the bank pays you more frequently than at the end of the year is:
Amount of \$\$
in the account
Initial value as a function

\# of times the bank
"Compounding period" \rightarrow the number of times the bank pays you each year.
"A bank pays 3\% per year compounded monthly."

$$
A(t)=A_{0}(1+0.03 / 12)^{12 * t}
$$

Annual
interest rate
Years after the deposit

Values of " k "	
Words to look for	K
Annually	1
Semi-annually	2
Quarterly	4
Monthly	12
Daily	365

You deposit \$100 money into an account that pays 3.5\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$
A(t)=A_{0}(1+r / k)^{k * t}
$$

$$
A(t)=A_{0}(1+r)^{t}
$$

$$
\begin{array}{cl}
A(5)=100\left(1+\frac{0.035}{12}\right)^{12 * 5} & A(5)=100(1+0.035)^{(5)} \\
A(5)=\$ 119.09 & A(5)=\$ 118.77
\end{array}
$$

Interest paid at the end of each month

Interest paid at the end of each year

You deposit $\$ 200$ money into an account that pays 5.5% interest per year. How much money will be in the account at the end of the $20^{\text {th }}$ year?

$$
\begin{gathered}
A(t)=A_{0}(1+r)^{t} \\
A(20)=\$ 200(1+0.055)^{(20)} \\
A(20)=\$ 583.55
\end{gathered}
$$

You buy a car for $\$ 18,500$. It depreciates at 15% per year. What is the value of the car (what you could sell it for) after 7 years?

$$
\begin{gathered}
V(t)=V_{0}(1-r)^{t} \\
V(t)=18,500(1-0.15)^{(t)} \\
V(t)=18,500(0.85)^{(t)}
\end{gathered}
$$

What is the growth factor? Is it "growth" or "decay"?

$$
V(7)=18,500(0.85)^{(7)}
$$

$V(7)=\$ 5930.68$

You deposit \$100 money into an account that pays 3.5\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$
\begin{gathered}
A(t)=A_{0}(1+r / k)^{k t} \quad A(5)=100\left(1+0.035 / 12^{12(5)}\right. \\
A(5)=\$ 119.09
\end{gathered}
$$

What is the doubling time for this account?

$$
\begin{aligned}
& 200=100(1+0.035 / 12)^{12 t} \\
& 2=(1.0029)^{12 t} \\
& y_{1}=(1.0029)^{t} \\
& y_{2}=2
\end{aligned} \quad \text { Solve by gr }
$$

You deposit $\$ 200$ money into an account that pays 5.5% interest per year. The interest is "compounded" quarterly. How long will it take for your money to triple?

$$
A(t)=A_{0}(1+r / k)^{k t} \quad 600=200(1+0.055 / 4)^{4(t)}
$$

$3=(1.0138)^{4 t}$
$y_{1}=(1.0138)^{t}$
$y_{2}=3$

Solve by graphing

