## Math-2

## Lesson 8-9

Practice Calculating Probabilities

What is the probability of dealing a King out of a well-shuffled deck of 52 cards?
Convert this probability into a $\quad \overline{4}$
percentage.
The probability of arriving on time is $55 \% . \quad 55 \% * \frac{1}{100 \%}=0.55$ Convert this to decimal form:

What is the probability of drawing a King followed by a Queen (without replacement)?

$$
P(K \text { and } Q)=P(K) * P(K / Q)=\frac{4}{52} * \frac{4}{51}
$$

Convert this probability into a percentage.

$$
\frac{4}{52} * \frac{4}{51}=\frac{16}{2652}=0.006 * \frac{100 \%}{1}=0.6 \%
$$

Convert this probability into a decimal.

A mom and pop pet store has 20 animals. 5 animals are reptiles, 7 are mammals, and 8 are birds. 3 of the reptiles are turtles and 2 are iguanas. 4 of the mammals are cats and 3 are dogs. 5 of the birds are cockatiels and 3 of them are macaws.
$P($ Reptile $)=$ ? $\frac{5}{20}$
$P($ Turtle $)=? \quad \frac{3}{20}$
$P($ Cat $/$ Mammal $)=$ ?


Probability for the Sum of Two Fair Dice=?
$P(2)$

$$
P(2)=\frac{1}{36}
$$

$$
P(4)=\text { ? }
$$

$$
P(9)=?
$$

$$
P(4)=\frac{3}{36}
$$

$$
P(9)=\frac{4}{36}
$$

$P($ even number $)=$ ? $\quad P\left(\begin{array}{lll}\text { or a } & 9)=\text { ? }\end{array}\right.$
$P(7)=?=\frac{6}{36}$
$P($ even $)=\frac{18}{36} \quad P($ even $)=\frac{2}{36}+\frac{4}{36}=\frac{6}{36}$

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Fill in the table

## Build a Venn Diagram

$\left.\begin{array}{|l|c|c|c|}\hline & \begin{array}{l}\text { Black } \\ \text { hair }\end{array} & \begin{array}{l}\text { Other } \\ \text { color hair }\end{array} & \text { Totals } \\ \hline \text { Men } & 50 & 124 & 174 \\ \hline \text { Women } & 55 & 76 & 131 \\ \hline \text { Totals } & 105 & 200 & 305 \\ \hline\end{array} \quad \begin{array}{c}\text { Ber } \\ 124\end{array} \quad \begin{array}{c}\text { Black } \\ \text { hair } \\ 50 \\ 55\end{array}\right)$

Error in notes for VENN Diagram

Make a table from the Venn diagram


|  | Positive | Negative | Totals |
| :--- | :---: | :---: | :---: |
| Have TB | 675 | 155 | 830 |
| Not TB | 50 | 135 | 185 |
| Totals | 725 | 290 | 1015 |

$$
\begin{aligned}
& P(A)=7 / 23 \\
& P(A / B)=4 / 11 \\
& P(B / A)=\text { ? } 4 / 7 \\
& P(A / \bar{B})=\text { ? } \quad 3 / 12 \\
& P(B)=\text { ? } \quad 11 / 23 \\
& P(A \cap B)=\text { ? } \quad 4 / 23 \\
& P(A \cap \bar{B})=\text { ? } \quad 3 / 23 \\
& P(\bar{A} \cap B)=\text { ? } \quad 7 / 23 \\
& P(\bar{A} \cap \bar{B})=? \quad 9 / 23 \\
& P(\bar{A} \cup \bar{B})=\text { ? } \quad 19 / 23 \\
& P(A \cup B)=? \quad 14 / 23
\end{aligned}
$$

$$
\begin{aligned}
& P(A)=0.40 \quad \text { What if it is a decimal probability? } \\
& P(B)=0.5 \\
& P(\bar{B} / \bar{A})=0.25 \\
& P(B / A)=\text { ? } 5 / 40=0.125 \\
& P(A / \bar{B})=\text { ? } 35 / 50=0.7 \\
& P(B)=\text { ? } \quad 50 / 100=0.5 \\
& P(A \cap B)=? 5 / 100=0.05 \\
& P(A \cap \bar{B})=\text { ? } 35 / 100=0.35 \\
& P(\bar{B} / \bar{A})=0.25=\frac{x}{60} \\
& 60 * 0.25=\frac{x}{60} * 60 \\
& \mathrm{x}=15 \\
& P(\bar{A} \cap B)=? 45 / 50=0.9 \\
& \begin{array}{l}
P(\bar{A} \cap \bar{B})=? \quad 15 / 100=0.15 \\
P(\bar{A} \cup \bar{B})=? \quad(45+15+35) / 100=0.95 \\
P(A \cup B)=? \quad(5+35+45) / 100=0.85
\end{array}
\end{aligned}
$$

Melany plans on running a race. There are a total of 8 contestants. If everyone has the same running ability, what is the probability that she will finish in first place?

$$
\begin{aligned}
& P(\text { event })=\frac{\# \text { of ways for her to be in first place }}{\# \text { of ways } 8 \text { runners to finish }} \\
& P(\text { event })=\frac{1^{1} P}{{ }_{8}^{8} P}=\frac{1}{40320}
\end{aligned}
$$

## Writing Probability Statements

|  | Tails | No tails | Total |
| :---: | :---: | :---: | :---: |
| Mammals | 5 | 4 | 9 |
| Not mammals | 7 | 3 | 10 |
| Total | 12 | 7 | 19 |

$P($ mammal $)=\frac{?}{?}=\frac{9}{19}$
$P($ tail $/$ mammal $)=\frac{?}{?}=\frac{5}{9}$
$P($ no tail $/$ not mammal $)=\frac{?}{?}=\frac{3}{10}$
$P($ mammal / no tail $)=\frac{?}{?}=\frac{4}{7} \quad P($ not mammal $/$ tail $)=\frac{?}{?}=\frac{7}{12}$

## Your Turn

|  | Wins | Losses | Tie Games | Total |
| :---: | :---: | :---: | :---: | :---: |
| Steelers | 7 | 8 | 1 | 16 |
| 49ers | 10 | 6 | 0 | 16 |
| Total | 17 | 14 | 1 | 32 |

1. What is the probability that a game ends with the Steelers winning?
2. What is the probability that a game was won?
3. What is the probability that the 49ers played in a game?

4. How many students were surveyed?
5. What were the students asked?
6. What does the number 375 represent?
7. How many students are in both choir and band?
8. How many students are not in either choir or band?
9. What is the probability that a randomly selected student would be in band?

## TB or Not TB?

Tuberculosis (TB) can be tested in a variety of ways, including a skin test.

If a person has tuberculosis antibodies, then they are considered to have TB.

Build a tree diagram and label it.

|  | Test <br> Positive | Test <br> Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB |  |  |  |
| Don't have TB |  |  |  |
| Total |  |  |  |

Pane TB/"+" test:

From the probability given, fill in the table and the tree.

|  | Test Positive | Test Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB | 675 |  |  |
| Don't have TB | $725-675=50$ |  |  |
| Total | 725 |  |  |

$P(\mathrm{~TB} /$ " + " test $)=\frac{675}{725}$
Patients:
Test Positive: 725

This probability gives you 2 Test Negative: numbers in the table/tree.

From these 2 numbers you
can find a $3^{\text {rd }}$ number.

## From the probability given, fill in the table and the tree.

|  | Test Positive | Test Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB | 675 |  | 830 |
| Don't have TB | 50 |  | $1015-830=185$ |
| Total | 725 |  | 1015 |

$$
\begin{aligned}
& P(\mathrm{~TB})=\frac{830}{1015} \\
& \text { Patients: } 1015 \quad \text { Test Positive: } 725 \quad \text { Dave } \mathrm{TB} / \text { " }+ \text { " test: } 675
\end{aligned}
$$

This probability gives you 2 Test Negative: numbers in the table/tree.

This provides enough information to file in the rest of the table/tree.

## From the probability given, fill in the table and the tree.

|  | Test Positive | Test Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB | 675 | $830-675=155$ | 830 |
| Don't have TB | 50 |  | 185 |
| Total | 725 |  | 1015 |

$$
\begin{aligned}
& P(\mathrm{~TB})=\frac{830}{1015} \\
& \text { Patients: } 1015 \quad \text { Test Positive: } 725 \quad \text { Dave } \mathrm{TB} / \text { " }+ \text { " test: } 675
\end{aligned}
$$

This probability gives you 2 Test Negative: numbers in the table/tree.

This provides enough information to file in the rest of the table/tree.

## From the probability given, fill in the table and the tree.

|  | Test Positive | Test Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB | 675 | 155 | 830 |
| Don't have TB | 50 |  | 185 |
| Total | 725 | $1015-725=290$ | 1015 |

$$
\begin{aligned}
& P(\mathrm{~TB})=\frac{830}{1015} \\
& \text { Patients: } 1015 \quad \text { Test Positive: } 725 \quad \text { Dave } \mathrm{TB} / \text { " }+ \text { " test: } 675
\end{aligned}
$$

Have TB/ "neg" test: 155 numbers in the table/tree.

This provides enough information to file in the rest of the table/tree.

## From the probability given, fill in the table and the tree.

|  | Test Positive | Test Negative | Total |
| :---: | :---: | :---: | :---: |
| Have TB | 675 | 155 | 830 |
| Don't have TB | 50 | $290-155=135$ | 185 |
| Total | 725 | 290 | 1015 |

$$
\begin{aligned}
& P(\mathrm{~TB})=\frac{830}{1015} \\
& \text { Patients: } 1015 \quad \text { Test Positive: } 725 \quad \text { Dave } \mathrm{TB} / \text { " }+ \text { " test: } 675
\end{aligned}
$$

Have TB/ "neg" test: 155 numbers in the table/tree.

This provides enough information to file in the rest of the table/tree.

Below is a tree diagram representing data based on 1,000 people who have been given a skin test for tuberculosis.


