Math-2

Lesson 8-8 -Tree Diagrams -Venn Diagrams -Logical word "AND" -Logical word "OR" -Probability of Sequential Events

32 games were played by the Steelers and 49ers. They each played 16 games. The Steelers won 7 and lost 9. The 49ers won 10 and lost 6. Build a Tree diagram.

We can build it either way. Which way do you think is better?

Find:
1.
$$P(Lost \cap Steelers) = \frac{9}{32}$$

2. $P(49ers) = \frac{16}{32}$
3. $P(Won|Steelers) = \frac{7}{16}$

4.
$$P(Won|49ers) = \frac{10}{16}$$

5. $P(Won) = \frac{17}{32}$
6. $P(Won \cap 49ers) = \frac{10}{32}$

Build a 2-way table

	Won	Lost	Totals
Steelers	7	9	16
49ers	10	6	16
Totals	17	15	32

Logical Words

AND Comes up in many contexts:

(1) Inequalities x > 5 AND x < 8

(2) 2-Way Tables $B \cap F \rightarrow Black AND Ford$

(3) Venn Diagrams

AND means both conditions must be met

Logical Words

- <u>OR</u> Comes up in many contexts:
- (1) Inequalities $x < 2 \ OR \ x > 7$
- (2) 2-Way Tables $B \cup F \rightarrow Black \ OR \ Ford$
- (3) Venn Diagrams

<u>OR</u> means <u>if the group meets one of the two conditions</u> then that group is included.

How many cars are Fords or Black? 3+8+4=15How many cars are Fords or not black? 3+8+2=13How many cars are not Fords or black? 4+2+3=9How many cars are not Fords or not black? 4+2+8=14

	Ford	Not Ford	Totals
Black	3	4	7
Not Black	8	2	10
Totals	11	6	17

The symbol for <u>OR</u> is "<u>U</u>" Find: 1. $P(Ford \cup Black) = \frac{15}{17}$ 3. $P(F \cap \overline{B}) = \frac{8}{17}$ 2. $P(\overline{F} \cup \overline{B}) = \frac{14}{17}$ 4. $P(F/B) = \frac{3}{7}$ <u>Sequential Events</u> (one event <u>followed by</u> another event):

(Coin toss): P(H and H)

For sequential events <u>AND</u> means multiply (the individual probabilities).

(Cointoss): $P(H \text{ and } H) = P(H) * P(H) = \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$

(*Coin toss*): *P*(*H and H and T*) For sequential events <u>AND</u> means multiply (the individual probabilities).

(Coin toss): P(H and H and T) = P(H) * P(H) * P(T)

$$=\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$$

Tossing coins \rightarrow The two events are <u>independent</u> (determining what the second probability is does not depend upon what happened in the first event).

Calculate the probability of drawing a Red marble followed by a blue marble without replacement.

The probability of the second event depends upon the first event \rightarrow since there will be one fewer red marble when we pick the second marble. We say the second is NOT independent of the 1st event.

Red

Blue

P(B/R)

from this bag of marbles)

Red

Red

Red

Blue

1st event Pick a Red marble 2nd event Pick a blue marble from this bag of marbles)

Red

Calculate the probability of picking a red marble followed by a blue marble with replacement.

 $P(R \text{ and } B) = P(R) * P(B/R) = \frac{3}{4} * \frac{1}{4} = \frac{3}{16}$

The second event DOES NOT depend upon the first event \rightarrow independent.

<u>Sequential Events</u> (one event <u>followed by</u> another event):

(*drawing cards*): *P*(*K and K*) (without replacement) Are these independent events?

<u>NO</u>. There will be one fewer king (card) in the deck for the second event.

$$P(K \text{ and } K) = P(K) * P(K / K) = \frac{4}{52} * \frac{3}{51}$$

(*drawing cards*): *P*(*Q and Q*) (with replacement)

Are these independent events?

<u>YES</u>. There will be the same number of cards to choice from in both the 1^{st} and 2^{nd} events.

 $P(Q \text{ and } Q) = P(Q) * P(Q / Q) = \frac{1}{52} * \frac{1}{52}$

Replacement \rightarrow The two events are <u>independent</u> (determining what the second probability is does not depend upon what happened in the first event).

= —

*

P(G)

For probabilities <u>OR</u> means add (the individual probabilities).

$$P(R \text{ or } \mathbf{B}) = P(R) + P(B)$$

$$= \frac{2}{4} + \frac{1}{4} = \frac{3}{4}$$

$$P(B \cup G) = P(B) + P(G)$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

$$P(B \cap G) = P(B) * P(G)$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

$$P(B \cap G) = P(B) * P(G)$$

$$= \frac{1}{4} * \frac{1}{3} = \frac{1}{12}$$

$$W/o \text{ "rplcmnt"}$$

$$- \frac{1}{4} * \frac{1}{3} = \frac{1}{12}$$

$$W/o \text{ "rplcmnt"}$$