Math-2

> Lesson 8-8
> -Tree Diagrams
> -Venn Diagrams
> -Logical word "AND"
> -Logical word "OR"
> -Probability of Sequential Events

A car dealer has 16 cars. 10 are Fords and 6 are Chevys.
3 Fords are Blue and 7 Fords are White
4 Chevys are Blue and 2 Chevys are White

Ford
10
Cars 16

White|Ford
White Ford
7

4

White Chevy

Find the probability for each path in the table.
$P(B \cap F)=\frac{3}{16}$

Build a Venn Diagram for this situation.

Blue Ford 3

32 games were played by the Steelers and 49ers. They each played 16 games. The Steelers won 7 and lost 9 . The 49ers won 10 and lost 6 . Build a Tree diagram.

We can build it either way. Which way do you think is better?

Find:

1. $P($ Lost \cap Steelers $)=\frac{9}{32}$
2. $P(49 e r s)=\frac{16}{32} \quad$ 5. $P($ Won $)=\frac{17}{32}$
3. $P\left(\right.$ Won \mid Steelers $F \frac{7}{16}$
4. $P($ Won $\cap 49$ ers $)=\frac{10}{32}$

Build a 2-way table

	Won	Lost	Totals
Steelers	7	9	16
49ers	10	6	16
Totals	17	15	32

Build the tree a different way

Steelers/won: 7 49ers/won: 10

Steelers/lost: 9
49ers/lost: 6

Logical Words

AND Comes up in many contexts:
(1) Inequalities $\quad x>5$ AND $x<8$
(2) 2-Way Tables $B \cap F \rightarrow$ Black AND Ford
(3) Venn Diagrams

AND means both conditions must be met

Logical Words

OR Comes up in many contexts:
(1) Inequalities $\quad x<2$ OR $x>7$
(2) 2-Way Tables $B \cup F \rightarrow$ Black OR Ford
(3) Venn Diagrams

OR means if the group meets one of the two conditions then that group is included.

How many cars are Fords or Black? $\quad 3+8+4=15$ How many cars are Fords or not black? $3+8+2=13$ How many cars are not Fords or black? $4+2+3=9$ How many cars are not Fords or not black? $4+2+8=14$

	Ford	Not Ford	Totals
Black	3	4	7
Not Black	8	2	10
Totals	11	6	17

The symbol for $\underline{\mathrm{OR}}$ is " \underline{U} "

$$
\begin{array}{ll}
\text { Find: } \\
\begin{array}{ll}
\text { 1. } P(\text { Ford } \cup \text { Black })=\frac{15}{17} & \text { 3. } P(F \cap \bar{B})=\frac{8}{17} \\
\text { 2. } P(\bar{F} \cup \bar{B})=\frac{14}{17} & \text { 4. } P(F / B)=\frac{3}{7}
\end{array}
\end{array}
$$

Sequential Events (one event followed by another event):
(Coin toss): $P(H$ and $H)$
For sequential events AND means multiply (the individual probabilities).
$($ Coin toss $): P(H$ and $H)=P(H) * P(H)=\frac{1}{2} * \frac{1}{2}=\frac{1}{4}$
(Coin toss): $P(H$ and H and T)
For sequential events AND means multiply (the individual probabilities).
(Coin toss): $P(H$ and H and $T)=P(H) * P(H) * P(T)$

$$
=\frac{1}{2} * \frac{1}{2} * \frac{1}{2}=\frac{1}{8}
$$

Tossing coins \rightarrow The two events are independent (determining what the second probability is does not depend upon what happened in the first event).

Calculate the probability of drawing a Red marble followed by a blue marble without replacement.
The probability of the second event depends upon the first event \rightarrow since there will be one fewer red marble when we pick the second marble. We say the second is NOT independent of the $1^{\text {st }}$ event.
$1^{\text {st }}$ event Pick a Red marble from this bag of marbles)

$$
P(R \text { and } \boldsymbol{B})=P(R) * P(B / R)=\frac{3}{4} * \frac{1}{3}=\frac{1}{4}
$$

Calculate the probability of picking a red marble followed by a blue marble with replacement.

$\underline{2^{\text {nd }} \text { event Pick a blue marble }}$ from this bag of marbles)

Replace the red marble

$$
P(R \text { and } \boldsymbol{B})=P(R) * P(B / R)=\frac{3}{4} * \frac{1}{4}=\frac{3}{16}
$$

The second event DOES NOT depend upon the first event \rightarrow independent.

Sequential Events (one event followed by another event):

(drawing cards): $P(K$ and K) (without replacement)

Are these independent events?

NO. There will be one fewer king (card) in the deck for the second event.
$P(K$ and $K)=P(K) * P(K / K)=\frac{4}{52} * \frac{3}{51}$
(drawing cards): $P(Q$ and Q) (with replacement)
Are these independent events?
YES. There will be the same number of cards to choice from in both the $1^{\text {st }}$ and $2^{\text {nd }}$ events. $P(Q$ and $Q)=P(Q) * P(Q / Q)=\frac{4}{52} * \frac{4}{52}$
Replacement \rightarrow The two events are independent (determining what the second probability is does not depend upon what happened in the first event).
(Bag of marbles)

For probabilities OR means add (the individual probabilities).

$$
\begin{array}{rlrl}
P(R \text { or } \boldsymbol{B})=P(R)+P(B) & & P(\mathrm{G} \cup \mathrm{R})=P(G)+P(R) \\
=\frac{2}{4}+\frac{1}{4}=\frac{3}{4} & & =\frac{1}{4}+\frac{2}{4}=\frac{3}{4} \\
P(B \cup G)=P(B)+P(G) & P(\mathrm{~B} \cap \mathrm{G})=P(B) * P(G) \\
=\frac{1}{4}+\frac{1}{4}=\frac{2}{4} & =\frac{1}{4} * \frac{1}{3}=\frac{1}{12} \mathrm{~W} / \mathrm{o} \text { "rplcmnt" } \\
& =\frac{1}{4} * \frac{1}{4}=\frac{1}{16} \mathrm{~W} / \text { "rplcmnt" }
\end{array}
$$

