Math-2 8-6

Pythagorean Identity,

Tangent lines and Secant lines of circles, Non-central/inscribed angles of Circles, Dilations and Rotations on the XY Plane

$\sin \theta=y$
$\cos \theta=x$
Back substitute to the triangle.
Write Pythagorean relationship for the triangle.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Find the measure of angles 1 and 2 if $m \angle 1=2 x-13$ and $m \angle 2=x$.

If a tangent to a circle intersects at the endpoint of a radius, then the angle of intersection is 90°.

Segment AC is tangent to Circle B at point C. Find BC

If a tangent to a circle intersects at the endpoint of a radius, then the angle of intersection is 90°.

$$
x=3
$$

Are the two triangles congruent? If so, what congruence theorem can you use to prove congruence?
Shared side is congruent
Pair of legs are radii \rightarrow congruent
AAS Congruence

$-2 x+12=3+x$

$$
x=3
$$

If two secant lines cut a circle then the angle of intersection is one half of the difference between the intercepted arcs.

Two Secants

$m \angle A=\frac{1}{2}(m D E-m B C)$

$$
\begin{array}{cc}
x=0.5(80-40) & x=0.5(7 x-20) \\
x=20 & 2 x=7 x-20 \\
& x=4
\end{array}
$$

$$
m \angle A=\frac{1}{2}(m C D B-m B C)
$$

Same for two tangent lines.

$$
\begin{aligned}
& x=0.5(190-170) \\
& x=10
\end{aligned}
$$

If two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

$$
\begin{gathered}
x y=w z \\
\\
9 x=3(6) \\
x=2
\end{gathered}
$$

If 2 chords insect inside of a circle then the measure of the angle is the average of the two intercepted arcs.

$$
\begin{aligned}
& m \angle 2=\frac{1}{2}(m C D+m A B) \\
& m \angle 1=\frac{1}{2}(m B C+m A D)
\end{aligned}
$$

Do the segments that connect the points form a parallelogram?

$$
F(2,1), G(1,4), H(5,4), \text { and } J(6,1)
$$

The Hard Way

1. Find all the segment lengths (opposite sides of parallelograms are congruent).

$$
\begin{aligned}
& G F=\sqrt{(2-1)^{2}+(1-4)^{2}}=\sqrt{1^{2}+(-3)^{2}}=\sqrt{1+9}=\sqrt{10} \quad \text { YES } \\
& H J=\sqrt{(5-6)^{2}+(4-1)^{2}}=\sqrt{(-1)^{2}+3^{2}}=\sqrt{1+9}=\sqrt{10} \\
& F J=\sqrt{(6-2)^{2}+(1-1)^{2}}=\sqrt{4^{2}+0^{2}}=\sqrt{16}=4 \\
& G H=\sqrt{(5-1)^{2}+(4-4)^{2}}=\sqrt{4^{2}+0^{2}}=\sqrt{16}=4
\end{aligned}
$$

2. Find all the slopes between the points (opposite sides are parallel).

$$
\begin{array}{ll}
m_{G F}=\frac{1-4}{2-1}=\frac{-3}{1}=-3 & m_{H J}=\frac{4-1}{5-6}=\frac{3}{-1}=-3 \\
m_{F J}=\frac{1-1}{6-2}=\frac{0}{4}=0 & m_{G H}=\frac{4-4}{5-1}=\frac{0}{4}=0
\end{array}
$$

Do the segments that connect the points form a parallelogram?

$$
\begin{aligned}
& F(2,1), \\
& \text { Vay } \\
& \text { e points }
\end{aligned}
$$

The Easy Way

1. Graph the points

2. Are opposite sides congruent? YES
3. Are opposite sides parallel? YES

Dilation: a transformation that results in the same shape but a different size. It uses a center of dilation and a scale factor to create the proportional figure.

Center of Dilation: a fixed point in the x-y plane about which all points of the figure are expanded or contracted.

Center of Dilation: $(0,0)$
$\underline{\text { Scale factor }}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{4}{2}$

Dilate the figure: Center of Dilation: $(1,1)$. Scale factor = 2

Rotate the shape 90° in the clockwise direction. Compare the two $x-y$ pairs. $\quad A:(-8,3) \quad A^{\prime}:(3,8)$

1) Moves the point to the adjacent quadrant of the $x-y$ plane $\rightarrow+/-$ of points may (or may not change).
2) $x-y$ values are exchanged.

What are the coordinates of: B' and C'? B': $(5,5)$

Rotate the shape 180° in the clockwise direction.
A: $(-8,3) \quad A^{\prime}:(8,-3) \quad$ Moves the point to the opposite quadrant of the $x-y$ plane $\rightarrow+/-$ of points change.

What are the coordinates of:
B^{\prime} and C^{\prime} ?
B': $(5,-6)$
C': $(2,-3)$

