Math-2 8-5

Radian Measure

and
the Measures of Arcs

$\tan \theta=5 / 9$ $\cos \theta=?$

Tangent ratio gives 2 sides of a right triangle.

$$
\begin{aligned}
h=\sqrt{5^{2}+9^{2}} & \cos \theta=\frac{9}{\sqrt{106}} \\
h=\sqrt{25+81} & \\
h=\sqrt{106} & \cos \theta=\frac{9 \sqrt{106}}{106}
\end{aligned}
$$

$$
\begin{gathered}
\cos \theta=3 / 10 \\
\sin \theta=?
\end{gathered}
$$

cosine ratio gives 2 sides of a right triangle.

$$
\begin{aligned}
& h=\sqrt{10^{2}-3^{2}} \quad \sin \theta=\frac{\sqrt{91}}{10} \\
& h=\sqrt{100-9} \\
& \quad h=\sqrt{91}
\end{aligned}
$$

Why 360° ?

The idea of dividing a circle into 360 equal pieces dates back to the sexagesimal (60 -based) counting system of the ancient Sumarians. Early astronomical calculations linked the sexagesimal system to circles.

If I lengthen the sides of the

Notice that the length of the arc depends upon how far the arc is from the vertex of the angle.

Degrees: The measure of an angle as a portion of 360° (the angle measure of a circle).

$$
90^{\circ}=1 / 4 * 360^{\circ}
$$

Radian measure: the ratio of the arc length to the distance the arc is from the vertex of the angle.

$$
\text { radian measure }=\frac{\operatorname{arc} \text { length }}{\text { radius }}
$$

Pi: an irrational number that is the ratio of the distance around the circle to the distance across the circle.

$$
\pi=\frac{C}{D} \quad \pi=\frac{C}{2 r} \quad C=2 \pi r
$$

radian measure $=\frac{\operatorname{arc} \text { length }}{\text { radius }}$

Radian measure for a complete circle.
radian measure of a circle $=\frac{\text { circumference }}{\text { radius }}$
radian measure of a circle $=\frac{2 \pi y}{r}$
radian measure of a circle $=2 \pi$ radians
Units of radians = inches/inches
Radian measure has no units! (nice)

What is the radian measure?

$$
\begin{array}{ll}
360^{\circ}=\frac{2 \pi}{} & \\
180^{\circ}=\frac{\pi}{\pi} & 60^{\circ}=\frac{\frac{\pi}{3}}{2} \\
90^{\circ}=\frac{\frac{\pi}{2}}{\pi} & 30^{\circ}=\frac{\frac{\pi}{6}}{\square} \\
45^{\circ}= &
\end{array}
$$

Degree-Radian Conversion Degree-Radian Conversion

$$
180^{\circ}=\pi \text { radians }
$$

The ratio of these two numbers equals one.

Multiplication by "one" does not change the number.
It just changes what the number looks like.

Converting from Degrees to Radian Measure

$$
140^{\varnothing 8}\left(\frac{\pi}{180^{\varnothing}}\right)=\frac{140}{180} \pi=\frac{14}{18} \pi=\frac{7}{9} \pi
$$

Converting from Radian Measure to Degrees

$$
\frac{x^{t}}{2}\left(\frac{180^{\circ}}{\not \pi^{\prime}}\right)=90^{\circ}
$$

Convert between radians and degrees using a "proportion".

$$
\frac{\text { angle }_{\text {degrees }}}{360}=\frac{\text { angle }_{\text {radians }}}{2 \pi}
$$

$$
\begin{aligned}
\frac{7}{8} \pi \quad \frac{\text { angle }_{\text {degrees }}}{360} & =\frac{7 / 8}{2 \pi} \\
360 * \frac{\text { angle }_{\text {degrees }}}{360} & =0.4375 * 360 \\
\text { angle }_{\text {degrees }} & =157.5^{\circ}
\end{aligned}
$$

Your Turn: Convert between radians and degrees.

$$
\frac{11}{3} \pi=?
$$

$$
270^{\circ}=?
$$

Radian measure: the ratio of the arc length to the radius of the circle:

$$
\text { radian measure }=\frac{\text { arc length }}{\text { radius }}
$$

Theta: a Greek letter. Traditionally, we use Greek letters as variables for the measure of an angle.

$$
\theta=\frac{s}{\mathrm{r}} \quad r \theta=\mathrm{s} \quad s=r \theta
$$

Problem types you'll see: What is length of the subtended arc?

$$
s=r \theta \quad s=5 * 3 \pi / 4
$$

$$
s=\frac{15 \pi}{4} \text { inches }
$$

Solving "subtended arc" problems: (1) use a proportion OR (2) convert the angle measure to radians and use the formula.
$\frac{\text { part }}{\text { whole }_{(\text {arc lengths })}}=\frac{\text { part }}{\text { whole }_{(\text {angles })}}$

$$
\frac{\mathrm{s}}{2 * \pi * \mathrm{r}}=\frac{\theta}{360 \text { or } 2 \pi}
$$

$\frac{\text { arc of the sector }}{\text { total arc of the circle }}=\frac{\text { angle of the sector }}{\text { total angle of the circle }} \quad \frac{\mathrm{s}}{2 * \pi * 5}=\frac{3 \pi / 4}{2 \pi}$

$$
s=\frac{5 * 3}{4} \pi
$$

$$
s=\frac{15 \pi}{4} \mathrm{in}
$$

We want our answers in reduced fraction form, with (Pi) π in the answer.

Find the length of the crust of a slice of pizza.
14 inch pizza (diameter) Slice is $1 / 8$ of the pizza
$\frac{\text { part }}{\text { whole }_{\text {(arc lengths) }}}=\frac{\text { part }}{\text { whole }_{\text {(angles }}}$

$$
\frac{s}{2 \pi r}=\frac{1}{8} * 360^{\circ}
$$

$$
\frac{s}{2 \pi r}=2 * * \pi * 7 * \frac{1}{8} * 360^{\circ}
$$

The area of a Sector, is a fraction of the area of a circle.
Write a proportion.

Exact dimension \rightarrow Exact answer leave the "pi" symbol in your answer

A circle has an 8 foot radius. What is the area of a 20° sector?

Write a proportion.

$\frac{\text { part }}{\text { whole }_{\text {(areas) }}}=\frac{\text { part }}{\text { whole }_{\text {(angles) }}}$

Exact dimension \rightarrow Exact answer
leave the "pi" symbol in your answer

Find the area of the crust of a slice of pizza.
14 inch pizza (diameter) Slice is $1 / 8$ of the pizza

$$
\begin{aligned}
A & =\frac{1}{8} * \pi * r^{2} \\
A & =\frac{1}{8} * \pi * 7^{2} \\
A & =\frac{49}{8} \pi i n^{2}
\end{aligned}
$$

