Math-2 Lesson 8-4:
 Volumes of Spheres, Cylinders, Cones, Pyramids, and Prisms

What does "volume" mean?

volume $=(1$ inch $)(1$ inch $)(1$ inch $)$
volume $=1$ inch 3
volume $=1$ "cubic inch"

What is the "volume" of the shape?
"how many 1 inch cubes will fit in the shape."

volume $=8$ cubic inches
volume $=8$ inch 3

This "box" is called a "rectangular prism".

$$
\text { volume }_{\text {rect. prism }}=\text { area of base } * \mathrm{~h}
$$

What is the "volume" of the prism?

What is the "volume" of the prism?

$v o l_{\text {prism }}=($ area of base $*$ height $)$
What if the base is a triangle?

$$
\begin{gathered}
\operatorname{area}_{\text {triangle }}=\frac{1}{2}(\text { base } * \text { height }) \\
\text { area }_{\text {triangle }}=\frac{1}{2}(3 \text { in } * 4 \text { in }) \\
\operatorname{area}_{\text {triangle }}=6 \text { in }^{2} \\
\text { vol }_{\text {prism }}=(\text { area of base } * \text { height }) \\
\text { vol }_{\text {prism }}=\left(6 \text { in }^{2}\right)(10 \text { in }) \\
\text { volume }=60 \text { inch }^{3}
\end{gathered}
$$

What part of the formula gives us the "cubic" units? \rightarrow radius cubed

$$
\begin{array}{ll}
\text { volume }=\frac{4}{3} \pi\left(\frac{6}{2}\right)^{3} \quad & \text { vol }=36 \pi \mathrm{in}^{3} \\
\quad \text { vol } \approx 113.1 \mathrm{in}^{3}
\end{array}
$$

volume $=\frac{4}{3} \pi(2.6)^{3} \quad \mathrm{vol}=73.6 \mathrm{in}^{3}$

The volume of a sphere is....?
volume $_{\text {sphere }}=\frac{4}{3} \pi \mathrm{r}^{3}$

The volume of a cone is....?

$$
\text { vol }_{\text {cone }}=(\text { area of base } * \text { height })
$$

volume $_{\text {cone }}=\frac{1}{3} \pi \mathrm{r}^{2} h$
What part of the formula gives us the "cubic" units?
Radius squared * height
volume $=\frac{1}{3} \pi(2)^{2}(6)$
volume $=8 \pi \mathrm{in}^{3}$

The volume of a pyramid is....?

vol ${ }_{\text {pyramid }}=$ (area of base $*$ height $)$

$$
\text { volume }_{\text {pyramid }}=\frac{1}{3}(\text { base area }) h
$$

volume $=\frac{1}{3}(4$ in $* 5 \mathrm{in}) * 6$ in

volume $=40$ in 3

volume $_{\text {prism }}=($ area of base $) * h$

$$
\text { volume }_{\text {rectangular pyramid }}=\frac{1}{3}(\text { base area }) h
$$

$$
\text { volume }_{\text {cylinder }}=(\text { area base }) * h
$$

$$
\text { volume }_{\text {cone }}=\frac{1}{3}(\text { area base }) * h
$$

surf. area $_{\text {sphere }}=4 \pi \mathrm{r}^{2}$
volume $_{\text {sphere }}=\frac{1}{3} * 4 \pi \mathrm{r}^{3}$

Where is the center of the circle?
$x^{2}+y^{2}=25 \quad$ Has not been shifted left/right \rightarrow center is $(0,0)$.
$(x+3)^{2}+y^{2}=25 \quad$ Left 3 shift \rightarrow center is $(-3,0)$
$(x-5)^{2}+(y+2)^{2}=25 \quad$ center is $(5,-2)$
What is the radius of the circle? $\quad x^{2}+y^{2}=25$

$$
x^{2}+y^{2}=r^{2} \quad \text { radius is } 5
$$

$(x-7)^{2}+y^{2}=49 \quad$ radius is 7
$(x+2)^{2}+y^{2}=64 \quad$ radius is 8

What is the center and radius of the circle?:

$$
x^{2}+y^{2}-6 x+8 y=0
$$

Complete the square!

$$
\begin{gathered}
x^{2}-6 x+9+x^{2}+8 y+10=0+9+16 \\
(x-3)^{2}-9+(y+4)^{2}-16=0
\end{gathered}
$$

Convert "perfect square trinomials" to "binomials squared then simplify.

$$
(x-3)^{2}+(y+4)^{2}=25
$$

$$
(h, k)=(3,-4) \quad \mathrm{r}=5
$$

Problem solving using similar triangles.

Solve using a proportion

$$
\begin{aligned}
& \frac{x}{1}=\frac{\sqrt{5}}{2} \\
& y=\sqrt{3} * \frac{\sqrt{5}}{2}
\end{aligned}
$$

$$
y=\frac{\sqrt{15}}{2}
$$

$$
x^{2}-9>0 \quad 0=(\mathrm{x}-3)(\mathrm{x}+3)
$$

Find the boundary numbers: solve the equation:
-3 and 3 divide the solution from the "non-solution."
The solution is one of the two graphs below.

Pick an easy number to test.

$$
(0)^{2}-9>0
$$

Zero IS NOT a solution, the top graph is the solution.

